
Hecate: Lifting and Shifting On-Premises Workloads to an
Untrusted Cloud

Xinyang Ge∗
Microsoft Research
and Databricks

xinyang.ge@databricks.com

Hsuan-Chi Kuo
University of Illinois at
Urbana-Champaign
hckuo2@illinois.edu

Weidong Cui
Microsoft Research

wdcui@microsoft.com

ABSTRACT
Despite the recent exponential growth in cloud adoption, businesses
that handle sensitive data (e.g., health and financial sectors) are
hesitant to migrate their on-premises IT infrastructure to the public
cloud due to the lack of trust on the cloud provider. Confidential
computing aims to move the cloud provider out of the trusted com-
puting base. New hardware features such as AMD’s SEV-SNP can
run a full virtual machine (VM) with confidentiality and integrity
protection against the cloud. However, there exist challenges in sup-
porting legacy operating systems and enforcing security policies
(e.g., firewalls) in confidential VMs.

In this paper, we present Hecate1, an L1 hypervisor that runs
inside a confidential VM enabled by SEV-SNP. Hecate can support
legacy operating systems by running them in a nested VM and
enforce various security policies on the nested VM based on the
virtualization boundary. The key challenge in designing Hecate
is that it cannot rely on the untrusted L0 hypervisor for nested
virtualization. To solve it, we repurpose SEV-SNP’s newly added
privilege dimension called Virtual Machine Privilege Levels (VM-
PLs) to enable virtualization for a single nested VM.

We have built a prototype of Hecate based on the Linux KVM
virtualization stack. Our prototype is capable of running MS-DOS,
FreeBSD and vanilla Linux without any modification. It also sup-
ports security checks on the nested VM such as network fire-
walls and kernel integrity. When compared with a regular, non-
confidential VM, the nested VM enabled by Hecate can achieve a
throughput between 57% and 85% for real-world applications such
as the Nginx web server and the MySQL database.

CCS CONCEPTS
• Security and privacy→ Trusted computing; Virtualization
and security.

KEYWORDS
confidential computing; virtualization; AMD SEV-SNP

∗This work was done while the author worked at Microsoft Research.
1Hecate is a Greek goddess of the mist that hides the mythical world from mortals.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560592

ACM Reference Format:
Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui. 2022. Hecate: Lifting and
Shifting On-Premises Workloads to an Untrusted Cloud. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3548606.3560592

1 INTRODUCTION
Despite the recent exponential growth of the cloud adoption, busi-
nesses that handle sensitive data, such as those in the financial
and health sectors, are hesitant to migrate their on-premises IT
infrastructure to the public cloud due to the lack of the trust on
the cloud provider. Confidential computing aims to move the cloud
provider out of the trusted computing base (TCB) to enable these
businesses to migrate their on-premises workloads to the cloud. It
achieves the security goal by creating a hardware-based trusted
execution environment (TEE) that is encrypted and isolated from
the rest of the software stack managed by the cloud provider. In
particular, the recently launched 3rd-generation AMD EPYC CPUs
are capable of running a full virtual machine (VM) inside a TEE
and protecting its confidentiality and integrity against a potentially
malicious hypervisor owned by an untrusted cloud provider.

While a confidential VM is a promising primitive to host sen-
sitive on-premises workloads, it has two major limitations. First,
a confidential VM does not provide the VM-level backward com-
patibility. It requires non-trivial changes in the guest OS kernel
to accommodate architectural differences and run securely in the
new environment. For example, the guest OS in a confidential VM
has to manage the state of its physical address space (e.g., private
pages for security-sensitive computation and shared pages for I/O),
and it also has to be implemented defensively whenever interacting
with the untrusted hypervisor (e.g., hypervisor-injected interrupts).
While some confidential workload only requires user-mode compat-
ibility (e.g., containers), many on-premises workloads have strict
VM-level compatibility requirements that must be supported in
order to migrate to confidential VMs. For example, Microsoft SQL
Server 2014 can only run on legacy Windows versions up to Win-
dows Server 2019 [10], and it is unlikely for either Microsoft or a
third party to make the required kernel changes to support running
a legacy Windows in a confidential VM. Second, an on-premises
IT infrastructure usually enforces a variety of security policies on
its workloads. For instance, network firewalls are usually deployed
to stop incoming attacks and outgoing leaks. It is challenging to
enforce security policies on confidential VMs because anything
outside of a confidential VM is not trusted.

To overcome these limitations of confidential VMs, our key idea
is to run an L1 hypervisor inside a confidential VM, and then run
an unmodified, regular VM image in a nested manner. Such an L1

https://doi.org/10.1145/3548606.3560592
https://doi.org/10.1145/3548606.3560592

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui

hypervisor solves both limitations simultaneously. For compatibil-
ity, the L1 hypervisor can hide the architectural differences of a
confidential VM and present the nested VM with a regular machine
abstraction. For security, the L1 hypervisor can use the virtual-
ization boundary within the confidential VM to enforce security
policies on the nested VM. In addition, the L1 hypervisor can shield
the nested VM from the untrusted L0 hypervisor since the legacy
OS in the nested VM is not designed to run defensively against a
malicious hypervisor. A confidential VM customer can trust the L1
hypervisor because it is under the customer’s control, while the
L0 hypervisor is not trusted because it is owned by the untrusted
cloud provider.

A key challenge in implementing an L1 hypervisor inside a
confidential VM is that we cannot rely on the untrusted L0 hy-
pervisor to virtualize the hardware support (e.g., AMD SVM and
Intel VMX) required by nested virtualization [14]. In this paper, we
present Hecate, the first L1 hypervisor that can run inside a confi-
dential VM. The enabling technology of Hecate is a new privilege
dimension added to confidential VMs on AMD CPUs called Virtual
Machine Privilege Levels (VMPLs). Every VMPL has its own user
and kernel spaces (ring 0-3), and different VMPLs share the same
guest physical address space with different permission views.

Intuitively, VMPLs allow us to isolate Hecate’s state from the
nested VM which is capable of running an entire OS. Unfortunately,
VMPLs are not designed for running a full-fledged hypervisor as
they lack key mechanisms required by a typical virtualization stack.
For example, different VMPLs share the same guest-physical-to-
host-physical address mappings configured by the L0 hypervisor
(i.e., nested page tables), and there is no additional level of address
translation between VMPLs. Shadow page tables are commonly
used before the introduction of hardware-assisted nested paging,
but they are not applicable here because a high-privileged VMPL
cannot intercept a low-privileged VMPL’s access to the cr3 register
which stores the physical address of the page table root.

Our key observation is that the primary purpose of building an
L1 hypervisor inside a confidential VM is for compatibility and secu-
rity rather than resource multiplexing. Therefore, we can simplify
the problem by supporting only a single nested VM. Specifically, we
reserve the lower address range for the nested VM so that it has an
illusion of owning the entire memory starting from (guest) physical
address 0. We run Hecate at a higher address range, and isolate
it from the nested VM by configuring VMPL permissions. We en-
able “trap-and-emulate” in Hecate based on new hardware features
introduced in SEV-SNP that allow code running in VMPL0 to re-
ceive exceptions from other VMPLs and access their CPU contexts
directly. We further protect the nested VM which is not designed
with an untrusted L0 hypervisor in mind by fully mediating the
interactions between them.

We have built a prototype of Hecate based on the Linux KVM
virtualization stack. By construction, the Hecate hypervisor is ca-
pable of running any OS that runs in a vanilla KVM VM, and we
show that Hecate can run MS-DOS 6.22, FreeBSD 12 and Linux 5.11
without requiring any guest modification. We evaluate the perfor-
mance of real-world server workload (e.g., MySQL, memcached and
Nginx) running in the nested VM on Hecate, and show that it can
achieve a throughput between 57% and 85% of the same software
stack running in a regular, non-confidential VM.

2 AMD SECURE ENCRYPTED
VIRTUALIZATION

In 2016, AMD introduced Secure Encrypted Virtualization (SEV) [1,
Chapter 15.34] to isolate a virtual machine from an untrusted hy-
pervisor. SEV achieves the isolation by automatically encrypting a
VM’s memory with a per-VM key inaccessible to the hypervisor.
AMD extended such protection to the VM’s register state in SEV-
ES [1, Chapter 15.35] (released in 2017), and added the integrity
protection of the VM’s memory in SEV-SNP [1, Chapter 15.36]
(released in 2021). In the rest of this section, we discuss key archi-
tectural features in SEV that are relevant to this work. We omit
the exact versions (SEV/SEV-ES/SEV-SNP) when the features were
added for brevity.

2.1 VM Save Area
A traditional hypervisor implements the hardware abstraction for
VMs by trapping critical instructions of a VM (e.g., accessing a
system-wide control register) and emulating the operation properly.
To protect a VM’s state, SEV adds a VM Save Area (VMSA) that is
encrypted from the hypervisor, and automatically saves/restores
the VM’s state when the VM’s execution is trapped/resumed.

However, the hypervisor needs to access a VM’s state to per-
form any emulation. Therefore, SEV adds a new exception vector
called VMM Communication Exception (#VC). The #VC exception
occurs when the executed guest instruction would have caused
a VM exit so that the VM has a chance to selectively expose its
state to the hypervisor for emulation. A VM can expose its selected
state via the guest-hypervisor communication block (GHCB) that
is shared between the VM and the hypervisor. For example, when
a VM executes WRMSR and triggers a #VC, it only needs to expose
EAX, ECX and EDX registers to the hypervisor because these three
registers are operands of that instruction and sufficient for emula-
tion. AMD standardizes the GHCB format to allow a confidential
VM to interoperate with any supporting hypervisor [6].

2.2 Virtual Machine Privilege Levels
AMD SEV-SNP adds a new privilege dimension called Virtual Ma-
chine Privilege Levels (VMPLs). There are a total of four VMPLs
(0-3) where a lower number indicates a higher privilege. Each VMPL
has its own ring 0-3 and hence its own user and kernel modes. AMD
introduces VMPLs to “provide hardware isolated abstraction layers
within a VM for additional security controls, as well as assistance
with managing communication with the hypervisor” [8].

Different VMPLs share the same guest physical memory but have
different permission views. VMPL0 has full permissions enabled
over the guest physical memory—readable, writable, user executable
and supervisor executable. It can grant a subset of its permissions
to lower-privileged VMPLs, and a higher-privileged VMPL always
has a more permissible view of the guest physical memory.

Each VMPL has its ownVMSA, and the CPU state associatedwith
each VMPL is automatically saved and restored by the hardware
when switching VMPLs. A higher-privileged VMPL can access the
VMSA of a lower-privileged VMPL. This enables a higher-privileged
VMPL to control certain behaviors of a lower-privileged VMPL. We
give two examples that are relevant to this work. First, it allows
a higher-privileged VMPL to inject interrupts and exceptions to a

Hecate: Lifting and Shifting On-Premises Workloads to an Untrusted Cloud CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

lower-privileged VMPL. Second, it allows a higher-privileged VMPL
to enable Reflect #VC for a lower-privileged VMPL. When Reflect
#VC is enabled for a VMPL, its execution no longer triggers a #VC
exception, but instead causes a special VM exit to the hypervisor
which can further reflect such exit to the higher-privileged VMPL
for handling. Given that a higher-privileged VMPL can access the
state of a lower-privileged VMPL, it does not require explicit state
sharing as it would for the hypervisor.

VMPLs are switched by the hypervisor. The untrusted hypervisor
can switch VMPLs at arbitrary time, or refuse to switch to a VMPL
at all, or even attempt to run two different VMPLs concurrently.

2.3 Virtual Top-of-Memory
The initial SEV implementation designates one bit (called C-bit) on
the guest page table entry to determine if a guest physical page
should be encrypted. This requires non-trivial changes to the MMU
code of the guest kernel.

SEV-SNP adds an alternative mechanism called Virtual Top-of-
Memory (vTOM). vTOM allows a confidential VM to specify a guest
physical address below which all the guest memory is encrypted,
and it can be configured per VMPL. vTOM is meant to ease the
engineering efforts when porting a new kernel to SEV-enabled
confidential VMs.

3 THREAT MODEL
We aim to build an L1 hypervisor to run inside a confidential VM
enabled by AMD’s SEV-SNP technology. Our threat model is in
line with the threat model assumed by confidential computing: we
assume the attacker has the full control over everything outside
of confidential VMs, including the L0 hypervisor. Specifically, the
attacker is able to schedule virtual CPUs arbitrarily, inject spurious
interrupts, swap memory pages of a confidential VM, lie about the
current time, report conflicting information about virtual CPUs,
and randomly drop VMEXIT events.

We assume the legacy VM we intend to run on top of the L1 hy-
pervisor is buggy and can become hostile after being compromised.
The compromised nested VM can attempt to escape its virtualization
boundary and further compromise the L1 hypervisor. It is worth
noting that, without proper protections, the nested VM does not
necessarily have to have a traditional bug before it can be compro-
mised. Given no legacy OS is written with a malicious hypervisor
in mind, the untrusted hypervisor can simply inject an interrupt
while the legacy OS has interrupt disabled to trigger race conditions
which should have never occurred on a correctly-behaving (virtual)
hardware.

We leave hardware attacks and side-channel attacks out of scope.
We assume the SEV-SNP hardware will perform correctly according
to its architectural specification including the memory encryption
and integrity protection of confidential VMs. We recognize that
the L0 hypervisor can launch various side-channel attacks [31, 43]
against confidential VMs to infer secrets. We consider defenses
against side-channel attacks as orthogonal to our work. The fo-
cus of our work is on providing compatibility and security policy
enforcement to confidential VMs.

We assume denial-of-service attacks are possible with the un-
trusted L0 hypervisor controlling the host. For instance, the hyper-
visor can do so by simply shutting down the physical machine.

In summary, we trust the L1 hypervisor, but not the L0 hypervisor
or the nested VM. This is not because the L1 hypervisor has fewer
bugs than the L0 hypervisor, but because the L1 hypervisor is
controlled by a confidential VM customer while the L0 hypervisor
is controlled by an untrusted cloud provider.

4 DESIGN
4.1 Challenges
We present two key challenges in building an L1 hypervisor to run
inside a confidential VM.

4.1.1 Untrusted L0 Hypervisor. A traditional nested virtualization
stack relies on the L0 hypervisor to virtualize the hardware sup-
port, such as Intel VMX and AMD SVM, to the L1 hypervisor. This
requires the L0 hypervisor to correctly forward nested VMEXITs,
shadow key data structures (e.g., VMCB on AMD SVM), and track
updates to the nested page tables used by the L1 hypervisor. How-
ever, given that the L0 hypervisor is no longer trusted in our setup,
the L1 hypervisor cannot rely on the L0 hypervisor to provide the
needed nested virtualization support.

In addition, the traditional nested virtualization stack does not
need to isolate the nested VM from the L0 hypervisor because the
L0 hypervisor is assumed trusted. In Hecate, the L1 hypervisor run-
ning inside a confidential VM must protect the nested VM from the
untrusted L0 hypervisor. This is particularly challenging because
no legacy OS is designed with a malicious (virtual) hardware in
mind, and the untrusted L0 hypervisor running at the highest priv-
ilege can interfere with its execution in various ways. To protect
the nested VM from the L0 hypervisor, the L1 hypervisor must
ensure that the untrusted L0 hypervisor cannot interfere with the
execution of the nested VM except for denial-of-service, which our
threat model explicitly permits. It must also protect the nested VM
from accidentally leaking secret information to the untrusted L0
hypervisor despite the presence of latent bugs.

4.1.2 Lack of Virtualization Support. Modern hypervisors rely on a
set of hardware virtualization features to implement the hardware
abstraction for VMs securely and efficiently. For example, both Intel
VMX and AMD SVM add a per-vCPU control structure to manage
the virtual CPU state, and a nested paging mechanism to translate
guest physical addresses (GPA) to host physical addresses (HPA)
for memory isolation.

While the VMPLs added by SEV-SNP is a promising feature for
state isolation as each VMPL has its own separate CPU state, it is
not designed for running a full-fledged L1 hypervisor. In particular,
modern hypervisors rely on nested paging to achieve isolation and
give each VM an illusion that it owns the entire memory space, but
there is no additional address translation between VMPLs. In fact,
all VMPLs see the same guest-physical-to-host-physical address
translation configured by the L0 hypervisor. In addition, there is
no hardware mechanism for a high-privileged VMPL to intercept
selected events from a low-privileged VMPL. Therefore, the L1 hy-
pervisor cannot use the traditional shadow page tables to virtualize
the memory management unit (MMU) because the L1 hypervisor

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui

Untrusted L0 Hypervisor

Confidential VM

Legacy OS (VMPL3)

GHCB Specification

Nested VMEXIT

L1 Hypervisor
(VMPL0) Virtual CPU Virtual I/O

Host hypervisor communication layer (defensive)

Figure 1: The architecture of Hecate.

cannot force a VMEXIT when the nested VM updates its page table
root (i.e., cr3).

4.2 Architecture
The architecture of Hecate is shown in Figure 1. Hecate runs the
trusted L1 hypervisor in the most-privileged VMPL0 and supports
a single nested VM running in the least-privileged VMPL3. To
protect the L1 hypervisor from the nested VM, Hecate configures
the memory permission in such a way that VMPL0 has access to
the entire address space while VMPL3 is only allowed to access the
nested VM’s own memory range. To protect the nested VM from
the untrusted L0 hypervisor, the L1 hypervisor fully mediates the
interactions between them.

To support nested VMExit, the L1 hypervisor enables Reflect #VC
for VMPL3. Whenever the nested VM executes an instruction that
would have required the hypervisor interaction, instead of generat-
ing a #VC exception, it would immediately cause a VMExit to the
L0 hypervisor which then forwards the event to the L1 hypervisor.
The L1 hypervisor has access to both the CPU and memory state
of the nested VM, so it can perform the emulation properly.

Hecate relies on the L1 hypervisor to provide system services
such as timer interrupts. Since the L0 hypervisor is untrusted, the L1
hypervisor must be defensive in its host hypervisor communication
layer. Hecate combines both hardware and software restrictions to
achieve this goal. For example, SEV-SNP adds an interrupt restric-
tion mechanism to prohibit the hypervisor from injecting interrupts
other than a newly-added vector (#HV). Hecate enables the restric-
tion so that it can ensure that any arisen exception (e.g., page fault)
is genuine and originated from its own execution rather than spu-
riously generated by an untrusted L0 hypervisor. However, Hecate
still needs to handle the situation in which an injected interrupt
occurs while the interrupt is disabled (EFLAGS.IF=0). We discuss
interfaces that require careful engineering to defend against an
untrusted L0 hypervisor in §5.1. For the rest of the section, we
assume the L1 hypervisor in Hecate is self-defensive and focus on
remaining challenges.

Untrusted L0 Hypervisor

Legacy OS (VMPL3) L1 Hypervisor (VMPL0)

Reflect #VC VMSA3Handler
2

1
3

Figure 2: Nested VMExit flow in Hecate.

4.3 CPU: Nested VMExit
Hecate virtualizes the CPU for the nested VM via trap and emu-
late based on nested VMExits. An example VMExit flow is shown
in Figure 2. A nested VMExit occurs when the nested VM executes
an instruction that requires emulations from the hypervisor, such
as the CPUID instruction that probes the available features on the
current virtual CPU. To implement nested VMExits, the L1 hypervi-
sor enables Reflect #VC for VMPL3 so that a VMExit in the nested
VM would cause a trap to the L0 hypervisor instead of raising a
#VC exception as it normally would in an SEV-SNP VM. When this
happens, the SEV-SNP hardware will save VMPL3’s CPU state to
its VMSA that is encrypted and integrity-protected before passing
the control to the L0 hypervisor. Next, the L0 hypervisor forwards
the VMExit event to the L1 hypervisor running at VMPL0. The L1
hypervisor examines the VMExit reason (a field in the VMSA of
VMPL3), performs the emulation, and then updates the relevant
states in the VMSA (e.g., general-purpose registers) before resuming
VMPL3.

This flow is similar to the nested VMExit implementation in the
traditional nested virtualization. However, one important difference
here is that the L0 hypervisor is no longer trusted. We identify three
possible attacks the untrusted L0 hypervisor can launch. First, it
can lie about a non-existent VMExit to VMPL0 to trick the L1
hypervisor to handle the same VMExit more than once. To defend
against this attack, the L1 hypervisor resets the VMExit reason field
in the hardware-protected VMSA to an invalid value every time it
handles a VMExit from VMPL3. Given only the SEV-SNP hardware
can change it back to a valid value on the next VMExit, the L1
hypervisor detects this attack by simply checking if the VMExit
reason is legitimate before it starts to perform the emulation.

Second, the L0 hypervisor can swallow a legitimate VMExit and
refuse to forward it to VMPL0. Since the L0 hypervisor cannot
update the VMSA which is integrity-protected by the hardware,
resuming VMPL3 without handling its VMExit will cause it to
trigger the same VMExit repeatedly given its instruction pointer
(RIP) still points to the same VMExit-inducing instruction. We are
not concerned with this attack since it will only cause denial-of-
service to the nested VM, which our threat model permits anyway.

Third, the L0 hypervisor can pause VMPL0 in the middle of
handling a nested VMExit and resume VMPL3 prematurely. This
can cause the nested VM to misbehave since it may see partial
updates from the L1 hypervisor. Hecate defends against this attack
by locking the VMSA throughout the VMExit handling. Specifically,
the L1 hypervisor sets the busy bit in the VMSA before handling

Hecate: Lifting and Shifting On-Premises Workloads to an Untrusted Cloud CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

L1 Hypervisor

MMIO

Nested VM

VMSA of nested VM

Real-Mode Memory

BIOS ROM

Figure 3: The guest physical memory layout of Hecate (from
low to high). Dashed boxes represent the memory regions
inaccessible to the nested VM running at VMPL3.

the VMExit, and clears the bit afterwards. The busy bit prevents
the L0 hypervisor from resuming the execution of VMPL3.

4.4 MMU: Uni-VM Design
MMU virtualization creates an isolated guest physical address space
to give an VM the illusion that it owns the entire physical mem-
ory. The challenge in enabling MMU virtualization in Hecate is
that there lacks an address translation layer between VMPLs. Early
hypervisors without nested paging use a more expensive shadow
paging mechanism to support MMU virtualization. It combines
the guest’s virtual MMU configuration with the hypervisor’s own
MMU configuration into a unified physical configuration, and mon-
itors the changes on the guest’s MMU configuration to update the
physical MMU accordingly. Unfortunately, shadow paging cannot
be used in Hecate because the L1 hypervisor running at VMPL0
cannot intercept the nested VM’s updates to its own page table root
(i.e., the cr3 register). This is different from the traditional nested
virtualization where the L0 hypervisor can be trusted to intercept
events of a nested VM. Hecate cannot rely on the untrusted L0
hypervisor for critical operations such as intercepting the nested
VM’s writes to control registers.

Given the primary goal of Hecate is for compatibility and security
rather than for resource multiplexing, we make a unique design
choice to support running only a single nested VM. We show the
memory layout of the guest physical address space in Figure 3. At
a high level, the lower memory range is reserved for the nested
VM, and the trusted L1 hypervisor runs at a higher address range.
This preserves the compatibility for legacy OSes that assume the
physical address space spans a contiguous range from address 0 to
the physical memory limit. The L1 hypervisor further sets up the
VMPL permissions so that the nested VM can only access its own
memory while the L1 hypervisor itself has full access to the whole
address space. By supporting only a single VM and restricting its
memory accesses using VMPL permissions, Hecate enables MMU
virtualization without paying the cost of an additional level of
nested paging or shadow paging.

One caveat of this design is that Hecate cannot support mapping
two guest physical pages in the nested VM to the same host phys-
ical page (e.g., double mapping or aliased mapping) because this
mapping is directly controlled by the L0 hypervisor. However, dou-
ble mapping is actually a legitimate requirement for x86 because
x86 maps the BIOS ROM at two aliased physical addresses 0xF0000
and 0xFFFF0000, and the legacy ROMmakes this assumption when
booting a guest OS. To handle aliased guest physical addresses, the
L1 hypervisor marks them as inaccessible to the nested VM, and
traps and emulates all accesses to these addresses to realize the
aliased effect. This does not cause any performance issue because
there are only a small number of BIOS operations on the aliased
guest physical pages.

4.5 I/O: Two-Layer Communication
The nested VM sends and receives information via virtualized I/O.
The L1 hypervisor implements virtual devices for the nested VM,
and then relays its communication to the outside world through
virtual devices exposed by the L0 hypervisor. This requires I/O
operations of the nested VM to go through two layers of virtual
devices. But it also allows the L1 hypervisor to enforce firewall
policies over the nested VM.

4.6 Shielding the Nested VM
The legacy OS running in the nested VM may not be written with
a malicious hypervisor in mind, so the trusted L1 hypervisor is re-
sponsible for protecting it from the untrusted L0 hypervisor. Hecate
achieves this goal by isolating the CPU execution and the memory
state of the nested VM from the L0 hypervisor.

First, although the CPU state of the nested VM stored in the
VMSA is encrypted and integrity-protected from the L0 hypervisor
on SEV-SNP, the L0 hypervisor can interfere with its execution by
injecting spurious interrupts. For example, the L0 hypervisor can
lie to the nested VM that an inter-processor interrupt (IPI) was sent
from a different virtual CPU. Hecate protects the nested VM from
such attacks by preventing the L0 hypervisor from injecting any
interrupt to VMPL3 including the #HV vector mentioned in §4.2.
This can be done on the SEV-SNP hardware by enabling Alternative
Injection for VMPL3. Alternative Injection allows only a higher-
privileged VMPL (the L1 hypervisor) to inject interrupts to a lower-
privileged VMPL (the nested VM). Hecate enables it and virtualizes
the interrupt controller for the nested VM.

Second, the nested VM may accidentally leak sensitive infor-
mation to the untrusted L0 hypervisor via shared, unencrypted
memory. The technical challenge here is that shared memory pages
can be established between the L0 hypervisor and the nested VM
without involving the L1 hypervisor. Moreover, the L1 hypervisor
cannot restrict the nested VM’s memory access to shared pages
using VMPL permissions because these permissions can only be
applied to private memory pages. We solve this problem by repur-
posing the Virtual Top-of-Memory (vTOM) feature on SEV-SNP.
Basically, vTOM allows the L1 hypervisor to specify a guest physi-
cal address boundary below which memory accesses are uncondi-
tionally deemed encrypted. In Hecate, the L1 hypervisor sets the
boundary to the end of the address space for VMPL3 to force all
memory accesses of the nested VM to be encrypted. By doing so,

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui

any accidental write to the shared memory from the nested VMwill
fail and trigger a special VMExit. Note that the vTOM restriction is
only enabled for VMPL3, so the L1 hypervisor can still communicate
with the L0 hypervisor via shared memory.

4.7 Nested Virtualization Comparison
We compare the nested virtualization in Hecate with the traditional
nested virtualization in this section. The traditional nested virtu-
alization emulates the hardware virtualization extension such as
Intel VMX and AMD SVM to an L1 guest VM, so that it can launch
and manage its own nested VMs [14]. At a high level, it requires
the L0 hypervisor to emulate the following functionalities, and we
compare its implementation with the L1 hypervisor in Hecate.

Nested VMExits allow the L1 hypervisor to handle VMExits from
nested VMs. They are implemented by trapping and forwarding
hardware-generated VMExits to an L1 guest in a similar manner
shown in Figure 2. However, the nested VMExits aremore expensive
in Hecate because the SEV-SNP hardware has to flush more CPU
states (e.g., TLB caches) due to confidentiality requirements. We
measure the cost of nested VMExits of the Hecate VMM in §7.1.

Per-vCPU control structure is a hardware-defined data structure
(e.g., VMCS on Intel and VMCB on AMD) to assist the hypervisor to
manage the virtual CPU state. The L0 hypervisor exposes a shadow
copy of the per-vCPU control structure of nested VMs to the L1
hypervisor and synchronizes its content to the real copy (used by
the hardware) at different points in time. On the contrary, the L1
hypervisor in Hecate has a direct access to the VMSA of the nested
VM, so it avoids the performance cost of shadowing the vCPU
control structures.

Nested paging virtualization allows the L1 hypervisor to manage
the physical address space of nested VMs using nested page tables.
It is implemented via shadow page tables that combine the two
levels of nested page tables into one, and the L0 hypervisor has to
track the L1 hypervisor’s page table updates for synchronization.
On the contrary, the L1 hypervisor in Hecate does not use nested
paging at all by only supporting a single nested VM (see §4.4 for
details). Therefore, it avoids the performance cost of extra VMExits
required for shadow page table synchronization.

5 IMPLEMENTATION
We implement the L1 hypervisor inHecate based on Linux KVM [26].
At a high level, the implementation has two parts. First, we en-
lighten the Linux kernel (which KVM depends upon) so that it
can function correctly and securely on top of the hardware fea-
tures of SEV-SNP for confidential VMs. Second, we enlighten the
KVM module to enable CPU and MMU virtualization for the nested
VM running at VMPL3. Note that KVM relies on QEMU (or other
KVM-compatible I/O virtualization providers) to provide I/O virtu-
alization. Since Hecate does not change KVM’s APIs, no changes
are required for QEMU.

Our implementation is based off Linux 5.11 which includes the
architectural support for running as an SEV-ES guest. We added
4000 lines of code to support SEV-SNP (§5.1), and another 2400 lines
of code to enlighten KVM for nested virtualization (§5.2).

5.1 Enlightening Linux Kernel
The L1 hypervisor in Hecate runs a customized yet complete Linux
kernel at VMPL0. To make it functional, we follow the GHCB spec-
ification of SEV-SNP [6] and adapt the Linux kernel to the new
architectural environment of a confidential VM. This includes an
implementation of the interrupt handler for the new #HV vector
and the management of the guest page state (private vs. shared).

Given that the kernel is specialized to run the KVM virtualization
stack rather than arbitrary workloads, we strip down unused kernel
functionalities to minimize the attack surface from the untrusted
L0 hypervisor. For example, we disable the legacy MMIO-based
APIC and port I/O-based 8259A PIC, and only enable the modern
Model Specific Register (MSR)-based x2APIC interface for manag-
ing interrupts. We then add checks on any information returned
by the untrusted L0 hypervisor to ensure that it is valid and consis-
tent. For example, Hecate checks if the hypervisor returns the same
APIC ID as the virtual CPU. These defensive checks require careful
engineering, but fortunately it only needs to be done correctly once
to run the nested VM securely. Next, we discuss two interesting
cases.

5.1.1 CPUID Security. The enlightened kernel executes the CPUID
instruction to probe available features on a virtual CPU. Tradition-
ally, CPUID unconditionally causes a VMExit and the hypervisor
has to emulate the instruction accordingly. However, the untrusted
L0 hypervisor may report inconsistent values and cause confu-
sion to the VM. Even worse, the CPUID leaf 0xD reports the buffer
size needed for saving the extended CPU state, and an incorrectly
reported size can cause memory corruptions in the enlightened
kernel.

To secure the CPUID instruction, we follow the recommendation
from AMD to require the untrusted L0 hypervisor to store all CPUID
results on a special guest page when initializing a confidential VM,
and have the SEV-SNP hardware check them for inconsistency.
When the enlightened kernel executes CPUID, it will trigger the
#VC exception, and the exception handler in the guest can emulate
the instruction based on the pre-populated results within the VM.

5.1.2 Interrupt Security. The enlightened kernel relies on exter-
nal interrupt sources emulated by the untrusted L0 hypervisor to
function (e.g., timer and I/O). The SEV-SNP hardware prohibits the
L0 hypervisor from injecting arbitrary exceptions, such as spuri-
ous page faults, to a confidential VM. Instead, it only allows the
L0 hypervisor to inject the newly-added #HV vector and informs
a confidential VM about the actual vector number via a separate
channel defined in the GHCB specification. The challenge is that
the hypervisor can inject the #HV exception at arbitrary times, e.g.,
when the enlightened kernel is holding a spinlock and does not
expect any external interrupt.

To avoid potential race conditions and/or deadlocks, an invariant
that must hold is that the enlightened kernel can only process an
external interrupt when the interrupt is enabled. Note that the
enlightened kernel cannot simply panic if an #HV interrupt arrives
when the interrupt is disabled because it is a legitimate scenario
given that the L0 hypervisor does not know if the interrupt is
enabled in a confidential VM.

Hecate: Lifting and Shifting On-Premises Workloads to an Untrusted Cloud CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Our approach is to delay the interrupt processing until the in-
terrupt is re-enabled in the enlightened kernel. On x86, there are
three instructions that can change the interrupt enablement: STI,
POPF and IRET. For STI and POPF, we append a check for pending
interrupt and process it as if the interrupt occurs right after the
interrupt enablement. We cannot use the same trick for IRET be-
cause IRET is used for interrupt return and the next instruction
may even be in the user mode. Instead, we check whether IRET is
about to enable interrupts before the interrupt handler restores the
general-purpose registers. If so, we enable interrupts prematurely
and process the pending interrupt as if the interrupt occurs right
after IRET.

5.2 Enlightening KVM
We enlighten KVM to enable CPU and MMU virtualization for the
nested VM at VMPL3. KVM contains both x86 common code and
platform-dependent code (e.g., Intel VMX, AMD SVM), and the
platform-dependent code is implemented as a set of callbacks so
that the common code can use it without concerning the actual
platform. We implement the required callbacks for SEV-SNP to
enable KVM to run at VMPL0 and operate on the VMSAs of the
nested VM. Note that our code changes to KVM are different from
the changes required for making KVM to support SEV-SNP as an
L0 hypervisor.

5.2.1 Memory Management. The L1 hypervisor in Hecate shares
the guest physical address space with the nested VM due to the lack
of nested paging support between VMPLs. Therefore, the first thing
the L1 hypervisor needs to do is to reserve a configurable amount of
memory starting from address 0 for the nested VM during booting.
This ensures that the lower memory range is always available to
the nested VM.

When QEMU launches the nested VM and maps its physical
memory to the user mode, the L1 hypervisor fills the mapped region
with the page frame numbers (PFNs) of the reserved memory in
a one-to-one fashion. This allows KVM, the QEMU process and
the nested VM to share a consistent view of its physical address
space. In addition, QEMU may create special mappings (e.g., BIOS
ROM) or even remove mappings (e.g., MMIO) for some physical
addresses of the nested VM. For these special physical addresses, the
L1 hypervisor makes the corresponding pages inaccessible to the
nested VM with VMPL permissions, and emulates all its memory
accesses to these pages accordingly.

5.2.2 Interceptions. The L1 hypervisor in Hecate can only inter-
cept events that cause an unconditional VMExit in the nested VM.
The untrusted L0 hypervisor can configure conditional intercepts,
but the L1 hypervisor cannot count on it since it is untrusted. Mean-
while, existing KVM relies on conditional intercepts to function
properly. For example, KVM intercepts its VM’s writes to its control
registers (e.g., CR0) to track the guest CPU mode, such as when
the VM is transitioning from the real mode to the 32-bit/64-bit pro-
tected mode. KVM tracks the guest CPU mode for the instruction
emulation whose behavior depends on various architectural states
of the virtual CPU (e.g., whether paging is enabled, etc.). We modify
KVM so that it does not rely on these conditional intercepts. For

the above example that tracks the virtual CPU mode, we simply
re-evaluate the CPUmode every time when KVM handles a VMExit.

6 SECURITY POLICIES
In this section, we present two security policies enabled by Hecate.
By design, Hecate can support any security policy that can be en-
forced at the virtualization boundary. In fact, there is a long history
of research that builds security policies on top of virtualization, and
we use two existing policies for demonstration purposes.

6.1 Network Filtering
Since the L1 hypervisor in Hecate runs in a full-fledged Linux kernel
(referred to as the Hecate kernel), it can enable network filtering
on the nested VM in more than one way. Next, we describe the
approach we take in our Hecate prototype.

First, we use MacVTap [7] to connect a virtual network inter-
face card (NIC) of the nested VM (exposed by QEMU via the L1
hypervisor) to a virtual NIC of the confidential VM (exposed by the
L0 hypervisor). We refer to the former as the inner NIC and the
latter as the outer NIC. Then, we enable eBPF/XDP-based network
filters [16] on the outer NIC inside the Hecate kernel. To filter net-
work traffic of the nested VM, we use the MAC address of the inner
NIC to identify packets to/from the nested VM. The Cilium open
source project [18] has shown that flexible network policies [17]
can be enforced with low performance impact based on eBPF/XDP.

6.2 Kernel Code Integrity
Kernel code integrity is an effective mitigation that prevents an
adversary from executing foreign code with the kernel privilege
despite the presence of kernel vulnerabilities. It has many different
implementations [4, 22], and next we describe our approach based
on VMPL permissions.

On the L1 hypervisor in Hecate, we added a pair of synthetic
model-specific registers (MSR) that hold the nested kernel’s base
physical address and size. Both MSRs have an initial value of zero
upon reset. The guest OS in the nested VM must be modified to
enable the code integrity protection. Specifically, when the guest
OS finishes booting, it should configure the two MSRs based on
the kernel code range, and the L1 hypervisor in Hecate would then
adjust the page permissions for VMPL3 in the following way. For
pages within the specified range, the L1 hypervisor strips the write
permission to ensure the kernel code cannot be modified afterwards.
For pages outside of the range, it strips the supervisor-execute
permission to prevent them from being abused as kernel code pages.
Finally, the L1 hypervisor enforces that the two synthetic MSRs
can only be written once and then remain locked until subsequent
reset. This approach leverages existing VMPL permission checks
to enforce lifetime kernel code integrity for the nested VM without
adding extra performance overhead.

Note that the current implementation does not support load-
able kernel modules given the protected kernel code must span a
contiguous range of memory. Protecting loadable kernel modules
requires code signing support, and we leave the engineering effort
to future work. We also recognize that leveraging kernel code in-
tegrity protection requires minor modifications of the guest OS in
the nested VM. While the goal of Hecate is to support unmodified

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui

Benchmark Baseline Linux0 Linux3

VMExit 1120 5200 18096
SendIPI 10474 23099 41395

Table 1: Microbenchmark performance in CPU cycles.

1 unsigned long vmexit_cost(void)
2 {
3 unsigned long now = rdtsc();
4 native_read_msr(MAGIC_MSR_INDEX); // VMExit
5 return rdtsc() - now;
6 }

Figure 4: Code snippet to measure the CPU cycles of a
VMExit.

guest OS, we show that minor kernel changes can be done to further
strengthen the security.

7 EVALUATION
In this section, we evaluate the compatibility and performance of
Hecate. We run all experiments on a dual-socket 3rd Gen AMD
EPYC processor (codenamed Milan) with 256 logical cores and
512GB RAM. The Milan processor is the first generation of CPUs
that support AMD’s SEV-SNP confidential VM technology. We
choose Microsoft Hyper-V as the L0 hypervisor because of its sup-
port of the GHCB specification [6].

By construction, the L1 hypervisor in Hecate is capable of run-
ning any OS that runs in a vanilla VM supported by KVM, and we
do the compatibility evaluation as a sanity check. We are able to
run multiple unmodified OSes, including MS-DOS 6.22 (which was
released in 1994), FreeBSD 12 (which was released in 2018) and
Linux 5.11 (which was released in 2021 and used for performance
evaluation below), in the nested VM.

We measure the performance by running both micro- and macro-
benchmarks. To provide comparable measurements, we keep the
guest software stack used in each experiment as identical as possible.
Specifically, we run Linux 5.11 compiled with the same configura-
tion and the same virtual disk image in three types of VMs: (1) a
regular VM with SEV-SNP disabled (baseline), (2) a confidential VM
without nested virtualization (the enlightened Linux running at
VMPL0, or simply Linux0), and (3) a nested confidential VM enabled
by Hecate (Linux3). Each VM has 4 virtual CPUs and 8GB RAM.

7.1 Microbenchmarks
For microbenchmarks, we measure the CPU cycles taken for han-
dling a VMExit event and delivering an inter-processor interrupt
(IPI). The results are shown in Table 1.

To measure the cost of a VMExit, we execute the code snippet
shown in Figure 4 in the guest kernel. We use the rdtsc instruction
to retrieve the current timestamp directly from the CPU, and trigger
a VMExit via the rdmsr instruction. We modify the L0 hypervisor’s
binary in such a way that it immediately resumes the guest upon
seeing the magic MSR index. Finally, we take another timestamp to
measure the elapsed cycles for the round trip.

Execl

FileCopy-1KB

FileCopy-256B

FileCopy-4KB

Pipe Throughput

Context Switc
h

Process
Creatio

n

Syste
m

Call
0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

re
la

ti
ve

to
re

gu
la

r
V

M
s

(h
ig

he
r

is
b

et
te

r)

Linux0

Linux3

Figure 5: UnixBench performance.

The VMExit incurs an increasingly higher CPU cycles from
the baseline all the way to the nested confidential VM enabled
by Hecate. For both baseline and Linux0, rdmsr is handled by the
L0 hypervisor. However, Linux0 has a more expensive world switch
because the hardware needs to flush more CPU states (e.g., caches,
TLBs) before transferring the control to the untrusted L0 hypervi-
sor. A VMExit in Linux3 involves more world switches because it
first traps to the L0 hypervisor which then forwards the event to
the L1 hypervisor running in VMPL0. And the execution has to go
through the L0 hypervisor again when returning to Linux3 after
the L1 hypervisor finishes handling the VMExit event. As a result,
it incurs the highest number of CPU cycles in this experiment.

We also evaluate the cost of sending an IPI, which the guest
kernel uses to coordinate different tasks on a multi-core system.
We measure the total cycles elapsed between when a virtual CPU
sends an IPI and when the destination virtual CPU receives the
hypervisor-injected interrupt. The results show a similar trend to
the VMExit cost because a virtual CPU needs to interact with the
hypervisor to send and receive an IPI. In the case of Linux3, both
L0 and L1 hypervisors are involved when the guest kernel in the
nested VM sends an IPI.

7.2 Macrobenchmarks
For macrobenchmarks, we run UnixBench and a set of popular
server programs. We use UnixBench to measure various aspects of
a Unix-like system such as file systems and system calls, and use
server programs to measure the performance impact on through-
put. We follow the experiment setup in [32] when evaluating the
performance impacts on server programs.

7.2.1 UnixBench. We show the results of UnixBench in Figure 5.
In general, benchmarks that perform in-memory computations
inside a VM do not have noticeable overhead (e.g., system calls).
File system benchmarks perform I/O operations that require device
emulation fromHecate. However, FileCopy-1KB and FileCopy-256B
do not have noticeable overhead because most of their operations
are serviced by in-memory file caches. In addition, context switch

Hecate: Lifting and Shifting On-Premises Workloads to an Untrusted Cloud CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Program Description

Netperf Measures the latency (TCP_RR) and throughput
(TCP_STREAM, TCP_MAERTS) with default param-
eters.

Nginx Measures the throughput (number of requests per sec-
ond) by retrieving the GCC reference manual (368KB)
using ApacheBench v2.3 with 32 concurrent requests.

Memcached Measures the throughput (number of requests per
second) using memtier benchmark v1.3.0 with binary
data.

MySQL Measures the throughput (number of queries
per second) using sysbench v1.0.18 with com-
mand oltp_read_write.lua, –tables=10 and
–table-size=100000.

Table 2: Network server benchmarks. We use default values
for parameters that are not explicitly specified in the de-
scription. All experiments require a client-server setup, and
we run the client in a separate, regular VM.

and process creation also have non-trivial performance overhead.
This is because both benchmarks require frequent coordinations
between two processes potentially running on different virtual
CPUs, and this will lead to frequent IPIs. We have shown that IPIs
are expensive in confidential VMs (whether nested or not) in Table 1.

Execl has the biggest performance difference between Linux0
and Linux3. We first describe what Execl does and then explain why.
Execl repeatedly invokes the execve system call to (re-)execute it-
self and measures the number of iterations it can complete within
a fixed period of time. The execve system call wipes out the entire
user-mode address space, loads the exactly same program binary,
and starts execution from its entry point as if it were a newly created
process. At a first glance, Execl does not involve any I/O operation
and should not incur any noticeable overhead. However, it turns out
that the startup code (which is executed before the main function)
needs to probe the available CPU features for which the CPUID
instruction is executed multiple times. The CPUID instruction in
Linux3 causes a VMExit to the L1 hypervisor in Hecate uncondi-
tionally, which incurs non-trivial performance overhead as shown
in Table 1. On the other hand, executing CPUID in Linux0 does not
cause a VMExit to the L0 hypervisor (see §5.1.1 for details), so it
does not show any noticeable overhead.

7.2.2 Server Programs. We run benchmarks on a set of popular
server programs listed in Table 2. For each benchmark, we use
default parameters except for those specified in the description. We
show the results in Figure 6. All of the evaluated server programs
have disk and/or network I/O operations. I/O operations are costly
in Linux3 because they need to go through two layers of virtualized
I/O devices: (1) the KVMvirtio layer exposed by the L1 hypervisor in
Hecate, and (2) the Hyper-V vmbus layer used between Hecate and
the L0 hypervisor. MySQL has over 40% reduction in throughput
because of its intensive I/O operations of both disk and network.

Netperf RR

Netperf STREAM

Netperf MAERTS
Nginx

Memcached

MySQL
0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

re
la

ti
ve

to
re

gu
la

r
V

M
s

(h
ig

he
r

is
b

et
te

r)

Linux0

Linux3

Figure 6: Network server performance.

8 SECURITY ANALYSIS
In this section, we perform a systematic security analysis of Hecate.
Specifically, we enumerate the possible attack vectors and describe
how Hecate is designed to defend against them.

8.1 From L0 Hypervisor to L1 Hypervisor
There are two ways for the L0 hypervisor to attack against Hecate.
First, the L0 hypervisor can attack Hecate as if it were attacking a
regular confidential VM that runs the guest OS natively. In addition
to the attacks described in §5.1, the L0 hypervisor may swap two
guest physical pages at runtime. SEV-SNP requires that a swapped
page will need to be validated again by the confidential VM before
it can be reused. We defend against such attacks by ensuring the
L1 hypervisor never accidentally validates the same guest physical
page more than once. Alternatively, the L0 hypervisor can also
lie about the current time to trick the confidential VM as if the
time were going back. This attack is being addressed by a recently
added SEV-SNP CPU feature called SecureTSC [11]. The attack
vectors of this category are not unique to Hecate. Instead, it must
be handled by any OS that runs natively inside a confidential VM.
The nice thing about the nested VM design of Hecate is that we
only need to do it correctly in the L1 hypervisor once, and all the
unmodified nested VMs will be protected against these attacks
despite their unawareness of a potentially malicious L0 hypervisor
sitting underneath.

Second, the L0 hypervisor can interfere with the communication
between the nested VM and the L1 hypervisor. We described the
three attacks that the L0 hypervisor can mount in §4.3. To briefly
recap, to defend against a non-existent VMEXIT lied by the L0
hypervisor, the L1 hypervisor resets the VMEXIT reason before it
handles the event from the nested VM. To defend against the L0
hypervisor preempting the L1 hypervisor’s handling of the nested
VMEXIT event, the L1 hypervisor locks the VMSA throughout the
VMEXIT handling to ensure it never partially handles the event.
We are not concerned that the L0 hypervisor swallows a VMEXIT
event from the nested VM because resuming the nested VMwithout

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui

involving the L1 hypervisor will cause the same VMEXIT to trigger
over and over again.

8.2 From L0 Hypervisor to Nested VM
It is one of the key challenges to protect the nested VM from the L0
hypervisor when we design Hecate. Putting aside latent software
bugs, the difficult part is that no legacy OS is written with a ma-
licious (virtual) hardware in mind. For example, the untrusted L0
hypervisor can inject a spurious interrupt when the guest OS has
the interrupt disabled (e.g., holding a lock) and introduce an artifi-
cial race condition. Alternatively, the untrusted L0 hypervisor can
corrupt any shared memory while the guest OS is reading/writing
it simultaneously.

We describe howwe shield the nested VM from the L0 hypervisor
in §4.6. At a high level, we isolate the CPU and memory state of
the nested VM from the L0 hypervisor. We leverage the Alternative
Injection feature to prevent the L0 hypervisor from injecting any
interrupt to the nested VM directly, and repurpose the Virtual
Top-of-Memory (vTOM) feature to disable any page sharing even
the nested VM wanted to. By doing so, we achieve the complete
mediation and ensure the nested VM can interact with the external
world only via the L1 hypervisor.

8.3 From Nested VM to L1 Hypervisor
In our threat model, we assume the nested VM is buggy and can
become hostile after being compromised (see §3). Although Hecate
only supports a single VM, we need to protect the L1 hypervisor to
ensure the correct enforcement of security policies such as those
described in §6. While the KVM stack we adapted for Hecate has
addressed the attacks between the nested VM and the L1 hyper-
visor via a regular VM boundary, we would like to emphasize the
fundamental isolation mechanisms we use in the Hecate design. To
isolate the memory state, we setup the VMPL permissions in a one-
way view so that the L1 hypervisor at VMPL0 can access the nested
VM’s memory but not vice versa. To prevent the nested VM from
accessing shared memory (which is not protected by the VMPL
permissions), we repurpose the vTOM feature so that all memory
accesses from the nested VM is always treated as encrypted, which
will fault when accessing the shared memory. To isolate the CPU
state, we ensure the VMSA page that stores the CPU state of the L1
hypervisor is inaccessible to the nested VM.

9 RELATEDWORK
In this section, we discuss related work in three areas: secure en-
claves, nested virtualization, and virtualization-based security.

9.1 Secure Enclaves
Hardware vendors have created an array of trusted execution en-
vironments (TEEs or enclaves) for hosting confidential workloads.
Intel SGX is a user-mode enclave that runs (a subset of) an ap-
plication with confidentiality and integrity protection despite a
malicious OS or hypervisor. It imposes many restrictions to the
application (e.g., cannot make system calls), and prior works have
been able to run unmodified applications inside an SGX enclave us-
ing library OSes [13, 38, 40]. The Intel IceLake processors launched
in 2021 extend the 128MB enclave memory limit to 1TB and make

SGX more appealing to server-class applications. However, Intel
SGX does not run an unmodified VM image due to its user-mode
nature, and thus cannot support the lift-and-shift scenario Hecate
enables in this work.

AMD SEV and Intel TDX [5] are virtual-machine-based hard-
ware enclaves. AMD SEV relies on a set of hardware mechanisms
to protect a confidential VM from the untrusted hypervisor. For
example, AMD SEV relies on the platform security processor (PSP)
to enable remote attestation and protect the guest pages from being
tampered with. On the other hand, Intel TDX manages confidential
VMs using a special TDX module, and the untrusted hypervisor can
allocate resources for confidential VMs via the interface defined
by the TDX module. We implement Hecate based on the VMPL
privilege separation on AMD SEV-SNP, and leave the support for
other platforms as future work.

ARM TrustZone partitions system resources into a normal world
(which runs the traditional software stack) and a secure world
(which runs the security-sensitive applications in isolation). It has
been used to host security-sensitive computation [24, 25] as well
as security monitors [12, 22]. TwinVisor [28] takes advantage of
the ARM TrustZone and runs two isolated hypervisors to support
confidential VMs.

ARMv9 introduces a new form of secure enclaves called Realm [2].
A Realm is an attestable environment which is isolated from the ex-
isting normal and secure worlds on today’s TrustZone architecture.
Each Realm can have its own applications and OS kernel. Despite
ARM’s dominance in mobile computing, the majority of today’s
on-premises workloads run on the x86 architecture.

Hardware enclaves can have firmware bugs [9] and are subject
to side-channel attacks [27, 29, 41–43]. An adversary can leverage
these attacks to extract sensitive information protected by the en-
clave at different granularities. It is an arms race between exploiting
new side channels versus defending against them. We deem this
line of research orthogonal to this work.

Amazon Nitro Enclave [3] relies on the host hypervisor to create
an isolated execution environment from a regular VM. It targets
a different threat model where the host hypervisor is assumed
trusted.

9.2 Nested Virtualization
The Turtles project [14] demonstrates a practical implementation of
nested virtualization on the commodity x86 hardware. It virtualizes
the hardware-assisted virtualization extension such as Intel VMX
and exposes it to a guest VM for nested virtualization.

DVH [32] optimizes the nested virtualization performance for
I/O with direct device assignments. DVH avoids the performance
cost of I/O operations involving multiple levels of virtualizations
by having the L0 hypervisor provide virtual hardware to nested
VMs directly. The same techniques do not apply to Hecate because
the host hypervisor is untrusted and prevented from accessing the
nested VM.

CloudVisor [44] repurposes nested virtualization to protect VMs
in a multi-tenant cloud. It limits the damage of a compromised
VMM by running it on top of a security monitor using nested
virtualization.

Hecate: Lifting and Shifting On-Premises Workloads to an Untrusted Cloud CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Hecate builds a nested virtualization stack using limited hard-
ware support for compatibility and security purposes. It only sup-
ports a single nested VM which simplifies the design and improves
the performance.

9.3 Virtualization-Based Security
Hardware-assisted virtualization has been extensively utilized for
security purposes. Virtual machine introspection [15, 19–21, 23,
33, 35, 37, 39, 45] is an effective approach to address the growing
security concerns within a virtual machine. SIM [37] implements a
kernel security monitor within a guest VM’s address space, and pro-
tects it from a potentially compromised guest kernel using nested
page tables. It achieves the isolation of security monitoring tools
while minimizing the performance overhead involved in world
switches. ImEE [45] further protects the in-VM monitor from being
deceived by a spurious virtual address mapping and ensures that
the guest kernel and the security monitor have a consistent memory
view.

SecVisor [36] and HVCI [4] enforce code integrity for the guest
kernel running in a VM. They leverage the hypervisor’s control
of the MMU (e.g., nested page tables or shadow page tables) to
run only approved code in the guest kernel space even when it is
compromised. Hecate leverages the VMPL permissions to achieve
the same code integrity goal.

These virtualization-based security mechanisms are complemen-
tary to Hecate. We have demonstrated two concrete security appli-
cations in §6.

10 DISCUSSION
Compared with previous research on OS architectures, our work
embraces a new challenge and opportunity: how to protect com-
putations inside a confidential VM while the L0 hypervisor is not
trusted anymore. Before confidential VMs were introduced, many
security schemes were provided by the L0 hypervisor. A key re-
search question in this new era of confidential VMs is how to enable
these security schemes inside confidential VMs. The new archi-
tecture, particularly the virtual machine privilege levels (VMPLs),
introduced by AMD’s SEV-SNP, creates new opportunities for OS
security researchers to leverage the isolations inside a confidential
VM to develop new security schemes. However, other new confi-
dential VM technologies such as Intel TDX [5] and ARM Realm[2]
lack a VMPL-like isolation inside their confidential VMs. This intro-
duces two new challenges: (1) how to enable security schemes based
on a security monitor (e.g., TDX Module or Realm Management
Monitor) running outside a confidential VM; (2) how to develop a
framework that is agnostic to confidential VM technologies. Our
work is the first attempt in the direction of protecting computations
inside confidential VMs. We hope it will lead to more impactful
research from the community.

A lessonwe learned from ourwork is that we needmore software-
hardware co-design in confidential VMs for better security and
performance. For instance, SEV-SNP relies on the L0 hypervisor
to perform VMPL switches. Our work shows that this hardware
design choice complicates the security design as the L1 hypervisor
has to defend itself from various ways the L0 hypervisor can inter-
fere with the switch process (§8.1). Meanwhile, it also introduces

unnecessary performance slowdown (§7.1). Since we expect more
innovations to happen inside confidential VMs, it is important for
the OS security community to work with hardware vendors to
design the right hardware primitives to enable new performant
security schemes inside confidential VMs.

As shown in our work, AMD SEV-SNP still allows the untrusted
hypervisor to manage the computing resources for confidential
VMs. This opens up opportunities for the untrusted hypervisor to
launch powerful side-channel attacks against a confidential VM [30,
31, 34].We leave defenses of side-channel attacks to future research.

11 CONCLUSION
In this paper, we present Hecate, the first L1 hypervisor that runs
inside a confidential VM. Hecate supports lifting and shifting on-
premises workloads by enabling compatibility with unmodified VM
images and enforcement of security policies such as network fire-
walls. The design challenge behind Hecate is that it cannot trust the
L0 hypervisor to provide nested virtualization, so we repurpose a
new privilege dimension available on AMD’s SEV-SNP technology
to enable virtualization for a single nested VM. We compare the
design of Hecate with traditional nested virtualization, and evaluate
its performance with real-world server workload. Our evaluation
shows that Hecate offers a practical approach for enterprise cus-
tomers to migrate their on-premises, security-sensitive workloads
to the public cloud.

ACKNOWLEDGMENTS
We would like to thank the reviewers for their insightful comments
and suggestions. We benefited tremendously from the discussions
we had at the early stage of this work with Andrew Baumann, Don-
ald Kossmann, Sibin Mohan and Marcus Peinado. We are grateful
for the help and feedback from Aditya Bhandari, Pushkar Chitnis,
Dexuan Cui, Mike Ebersol, Alexander Grest, David Hepkin, Michael
Kelley, Roman Kiselev, Tianyu Lan, Jon Lange, Li Li, Cheng-mean
Liu, Chris Oo, and KY Srinivasan at Microsoft. We also want to
thank David Kaplan, Thomas Lendacky, and Brijesh Singh from
AMD for answering numerous questions we had about AMD SEV-
SNP.

REFERENCES
[1] AMD64 Architecture Programmer’s Manual Volume 2: System Programming.

https://developer.amd.com/resources/developer-guides-manuals.
[2] ARM Confidential Compute Architecture. https://www.arm.com/why-arm/

architecture/security-features/arm-confidential-compute-architecture.
[3] AWS Nitro Enclaves. https://aws.amazon.com/ec2/nitro/nitro-enclaves/.
[4] Hypervisor-Protected Code Integrity (HVCI). https://docs.microsoft.com/en-

us/windows-hardware/drivers/bringup/device-guard-and-credential-guard.
[5] Intel Trust Domain Extensions (Intel TDX). https://www.intel.com/content/

www/us/en/developer/articles/technical/intel-trust-domain-extensions.html.
[6] SEV-ES Guest-Hypervisor Communication Block Standardization. https://

developer.amd.com/wp-content/resources/56421.pdf.
[7] MacVTap. https://virt.kernelnewbies.org/MacVTap.
[8] AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and

More. https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf.

[9] AMD Server Vulnerabilities. https://www.amd.com/en/corporate/product-
security/bulletin/amd-sb-1021.

[10] Using SQL Server in Windows. https://docs.microsoft.com/en-us/troubleshoot/
sql/general/use-sql-server-in-windows.

[11] SEV Secure Nested Paging Firmware ABI Specification. https://www.amd.com/
system/files/TechDocs/56860.pdf.

https://developer.amd.com/resources/developer-guides-manuals
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://developer.amd.com/wp-content/resources/56421.pdf
https://developer.amd.com/wp-content/resources/56421.pdf
https://virt.kernelnewbies.org/MacVTap
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1021
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1021
https://docs.microsoft.com/en-us/troubleshoot/sql/general/use-sql-server-in-windows
https://docs.microsoft.com/en-us/troubleshoot/sql/general/use-sql-server-in-windows
https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui

[12] Ahmed M Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen, Ruowen
Wang, and Peng Ning. 2016. SKEE: A Lightweight Secure Kernel-level Execution
Environment for ARM. In Proceedings of the 2016 Network and Distributed System
Security Symposium (NDSS).

[13] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding Applica-
tions from an Untrusted Cloud with Haven. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

[14] Muli Ben-Yehuda, Michael D Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,
Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. 2010.
The Turtles Project: Design and Implementation of Nested Virtualization. In
Proceedings of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

[15] Martim Carbone, Matthew Conover, Bruce Montague, and Wenke Lee. 2012.
Secure and Robust Monitoring of Virtual Machines Through Guest-Assisted In-
trospection. In Proceedings of the 15th International Workshop on Recent Advances
in Intrusion Detection (RAID).

[16] Cilium. BPF and XDP Reference Guide. https://docs.cilium.io/en/latest/bpf/.
[17] Cilium. Cilium Network Policies. https://docs.cilium.io/en/stable/policy/.
[18] Cilium. eBPF-based Networking Observability and Security. https://cilium.io.
[19] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke

Lee. 2011. Virtuoso: Narrowing the Semantic Gap in Virtual Machine Intro-
spection. In Proceedings of the 32nd IEEE Symposium on Security and Privacy
(Oakland).

[20] Yangchun Fu and Zhiqiang Lin. 2012. Space Traveling Across VM: Automatically
Bridging the Semantic Gap in Virtual Machine Introspection via Online Kernel
Data Redirection. In Proceedings of the 33rd IEEE Symposium on Security and
Privacy (Oakland).

[21] Tal Garfinkel and Mendel Rosenblum. 2003. A Virtual Machine Introspection
based Architecture for Intrusion Detection. In Proceedings of the 2003 Network
and Distributed System Security Symposium (NDSS).

[22] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. 2014. Sprobes: Enforcing
Kernel Code Integrity on the TrustZone Architecture. In Proceedings of the 3rd
Mobile Security Technology Workshop (MOST).

[23] Zhongshu Gu, Zhui Deng, Dongyan Xu, and Xuxian Jiang. 2011. Process Implant-
ing: A New Active Introspection Framework for Virtualization. In Proceedings of
the 2011 Network and Distributed System Security Symposium (NDSS).

[24] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and
Trent Jaeger. 2017. TrustShadow: Secure Execution of Unmodified Applications
with ARM TrustZone. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys).

[25] Jin Soo Jang, Sunjune Kong, Minsu Kim, Daegyeong Kim, and Brent Byunghoon
Kang. 2015. SeCReT: Secure Channel between Rich Execution Environment
and Trusted Execution Environment. In Proceedings of the 2015 Network and
Distributed System Security Symposium (NDSS).

[26] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM:
the Linux Virtual Machine Monitor. In Proceedings of the 2007 Ottawa Linux
Symposium.

[27] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring Fine-Grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In Proceedings of the 26th USENIX Security Symposium.

[28] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen, and Haibing Guan.
2021. TwinVisor: Hardware-Isolated Confidential Virtual Machines for ARM. In
Proceedings of the 28th Symposium on Operating Systems Principles (SOSP).

[29] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. 2021. CROSSLINE: Breaking
“Security-by-Crash” based Memory Isolation in AMD SEV. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security (CCS).

[30] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. 2019. Exploiting Un-
protected I/O Operations in AMD’s Secure Encrypted Virtualization. In Proceed-
ings of the 28th USENIX Security Symposium (Santa Clara, CA). 1257–1272. https:
//www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan

[31] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.
CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the
Ciphertext Side Channel. In Proceedings of the 30th USENIX Security Symposium.

[32] Jin Tack Lim and Jason Nieh. 2020. Optimizing Nested Virtualization Performance
using Direct Virtual Hardware. In Proceedings of the 25th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

[33] Yutao Liu, Yubin Xia, Haibing Guan, Binyu Zang, and Haibo Chen. 2014. Concur-
rent and Consistent Virtual Machine Introspection with Hardware Transactional
Memory. In Proceedings of the 20th International Symposium on High Performance
Computer Architecture (HPCA).

[34] Mathias Morbitzer, Manuel Huber, and Julian Horsch. 2019. Extracting Secrets
from Encrypted Virtual Machines. In Proceedings of the 9th ACM Conference on
Data and Application Security and Privacy. 221–230. https://doi.org/10.1145/
3292006.3300022

[35] Alireza Saberi, Yangchun Fu, and Zhiqiang Lin. 2014. Hybrid-Bridge: Efficiently
Bridging the Semantic Gap in Virtual Machine Introspection via Decoupled
Execution and Training Memoization. In Proceedings of the 2014 Network and
Distributed System Security Symposium (NDSS).

[36] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity OSes. In
Proceedings of the 21st Symposium on Operating Systems Principles (SOSP).

[37] Monirul I Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. 2009. Secure
In-VM Monitoring Using Hardware Virtualization. In Proceedings of the 16th
ACM Conference on Computer and Communications Security (CCS).

[38] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and Efficient Multitasking inside
a Single Enclave of Intel SGX. In Proceedings of the 25th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

[39] Deepa Srinivasan, Zhi Wang, Xuxian Jiang, and Dongyan Xu. 2011. Process
Out-Grafting: an Efficient “Out-of-VM” Approach for Fine-Grained Process Exe-
cution Monitoring. In Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS).

[40] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In Proceedings of the 2017
USENIX Annual Technical Conference (ATC).

[41] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In Proceedings of the 27th USENIX Security Symposium.

[42] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution. In Proceedings of the 26th USENIX Security
Symposium.

[43] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy.

[44] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011. Cloudvisor:
Retrofitting Protection of Virtual Machines in Multi-Tenant Cloud with Nested
Virtualization. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP).

[45] Siqi Zhao, Xuhua Ding, Wen Xu, and Dawu Gu. 2017. Seeing Through the Same
Lens: Introspecting Guest Address Space at Native Speed. In Proceedings of the
26th USENIX Security Symposium.

https://docs.cilium.io/en/latest/bpf/
https://docs.cilium.io/en/stable/policy/
https://cilium.io
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://doi.org/10.1145/3292006.3300022
https://doi.org/10.1145/3292006.3300022

	Abstract
	1 Introduction
	2 AMD Secure Encrypted Virtualization
	2.1 VM Save Area
	2.2 Virtual Machine Privilege Levels
	2.3 Virtual Top-of-Memory

	3 Threat Model
	4 Design
	4.1 Challenges
	4.2 Architecture
	4.3 CPU: Nested VMExit
	4.4 MMU: Uni-VM Design
	4.5 I/O: Two-Layer Communication
	4.6 Shielding the Nested VM
	4.7 Nested Virtualization Comparison

	5 Implementation
	5.1 Enlightening Linux Kernel
	5.2 Enlightening KVM

	6 Security Policies
	6.1 Network Filtering
	6.2 Kernel Code Integrity

	7 Evaluation
	7.1 Microbenchmarks
	7.2 Macrobenchmarks

	8 Security Analysis
	8.1 From L0 Hypervisor to L1 Hypervisor
	8.2 From L0 Hypervisor to Nested VM
	8.3 From Nested VM to L1 Hypervisor

	9 Related Work
	9.1 Secure Enclaves
	9.2 Nested Virtualization
	9.3 Virtualization-Based Security

	10 Discussion
	11 Conclusion
	Acknowledgments
	References

