
Policy Models to Protect Resource Retrieval

Hayawardh Vijayakumar, Xinyang Ge, and Trent Jaeger
Systems and Internet Infrastructure Security Laboratory

Department of Computer Science and Engineering
The Pennsylvania State University

hvijay@cse.psu.edu, xxg113@cse.psu.edu, tjaeger@cse.psu.edu

ABSTRACT
Processes need a variety of resources from their operating
environment in order to run properly, but adversary may
control the inputs to resource retrieval or the end resource
itself, leading to a variety of vulnerabilities. Conventional
access control methods are not suitable to prevent such vul-
nerabilities because they use one set of permissions for all
system call invocations. In this paper, we define a novel pol-
icy model for describing when resource retrievals are unsafe,
so they can be blocked. This model highlights two con-
tributions: (1) the explicit definition of adversary models
as adversarial roles, which list the permissions that dictate
whether one subject is an adversary of another, and (2) the
application of data-flow to determine the adversary control
of the names used to retrieve resources. An evaluation using
multiple adversary models shows that data-flow is necessary
to authorize resource retrieval in over 90% of system calls.
By making adversary models and the adversary accessibil-
ity of all aspects of resource retrieval explicit, we can block
resource access attacks system-wide.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls

General Terms
Security

Keywords
Resource Access Attacks; Protection

1. INTRODUCTION
Processes need a variety of resources from their operating

environment in order to run properly, such as files, IPCs, and
sockets. When a process retrieves a resource from the sys-
tem, it may select any resource to which it is authorized.
However, the retrieval of some authorized resources may
lead to vulnerabilities, depending on how those resources

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SACMAT’14, June 25–27, 2014, London, Ontario, Canada.
Copyright 2014 ACM 978-1-4503-2939-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2613087.2613111.

are to be used. Consider a web server that both serves con-
tent supplied by untrusted users and authenticates requests
from remote parties. It is easy to see that vulnerabilities
would result if the web server used its permissions to read
the password file when serving HTML pages or used un-
trusted HTML pages when authenticating remote parties.
In this paper, we explore methods to extend access control
mechanisms to prevent the retrieval of resources that will
lead to program vulnerabilities, which have been called re-
source access attacks [61].

In principle, such vulnerabilities may occur for a vari-
ety of reasons. First, a programmer may not expect that
a particular system call invocation may retrieve a resource
controlled by one of its adversaries, expanding the attack
surface of the program [31]. In such cases, the integrity
of the running program and/or the data it produces may
be compromised by using adversary-controlled input. In
the web server example, the use of untrusted content for
authentication would compromise the integrity of the web
server. Second, a programmer may not expect that a par-
ticular system call invocation may retrieve a resource that
contains security-sensitive data that should not available to
an adversary, leading to a confused deputy attack [28]. In
such cases, the confidentiality and/or integrity of that sensi-
tive data may be compromised. In the web server example,
the serving of the secret password file would compromise
the confidentiality of that file. Finally, an adversary may
be able to control the inputs that guide the retrieval of re-
sources to redirect a process to a resource of the adversary’s
choosing, leading to an attack during name resolution (e.g.,
time-of-check-to-time-of-use (TOCTTOU) attacks [40, 8]).
By supplying malicious input for file names or controlling
the namespace bindings (e.g., links and directories in a file
system namespace), adversaries can compromise either the
confidentiality or integrity of the process. In the web server
example, either an adversary may be able to redirect the
server to choose the web content file when the password file
is expected or vice versa.

Conventional access control mechanisms are fundamen-
tally unable to prevent such vulnerabilities because permis-
sions are associated with the process at large. Access control
list mechanisms [35] associate a set of subject identifiers with
each resource (i.e., object), authorizing any process running
under one of those subject identifiers to access the resource.
Thus, any system call invocation by an authorized process
will be allowed. Similarly, conventional operating systems
that enforce mandatory access control [67, 2, 24, 64, 59]
(MAC) associate labels with processes and resources, stor-

ing a mapping between the subject labels and the resource
labels to which they are authorized. Again, any system call
of any process running under a subject label that is autho-
rized to access resources of the target resource’s label will
be allowed, regardless of how this mapping is stored. In the
web server example, access control list mechanisms cannot
prevent the password file from accessed by mistake when
serving HTML pages, or vice versa, because the web server
has access to both resources.

On the other hand, capability systems [36] permit pro-
cesses to restrict the permissions available per system call,
but such mechanisms are only available in limited ways in
conventional systems. Capability systems permit program-
mers to select the permissions available per system call, by
using specialized references to resources that include per-
missions, themselves called capabilities, and by managing
the permissions available to the process flexibly [20]. Re-
searchers have shown that capability systems may be used
to prevent some of the vulnerabilities above, such as con-
fused deputy vulnerabilities [28]. However, using a capa-
bility system presents a challenge to programmers because
they must reason about both the functionality and security
of their programs concurrently. As a result, capability sys-
tems principles have only been adopted in limited ways, such
as sandboxing, that do not permit the flexible control of per-
missions envisioned for a general capability system [37]. The
result is that a variety of ad hoc solutions have been pro-
posed to block resource access attacks (see Related Work in
Section 3), but these solutions have been found to be bro-
ken [10] or fundamentally flawed [12].

One recent insight is that a system mechanism whose sole
purpose is to protect processes during resource retrieval can
gather knowledge from both the program and the system to
block vulnerabilities [61]. They highlight the fact that access
control mechanisms perform two tasks simultaneously, both
protecting benign processes from attack by limiting adver-
sary access to its resources and confining malicious processes
from attacking other processes. As a result, access control
mechanisms cannot leverage program internal state for their
decision-making because a malicious process may spoof the
system and break confinement. By separating protection
from confinement during resource retrieval in a separate
layer of defense called the Process Firewall [61], a variety
of resource access attack vulnerabilities can be blocked. As
the Process Firewall cannot confine a malicious process, it
only augments access control by blocking operations autho-
rized by conventional access control that would only lead to
vulnerabilities in the current program state, while still de-
pending on access control for confinement. In the web server
example, the Process Firewall examines program internal
state to identify whether the system call should retrieve the
adversary-accessible HTML file or the adversary-inaccessible
password file, and allows only the appropriate resource.

While the Process Firewall mechanism can prevent re-
source access attacks, the current policy model was also
shown to be limited. The Process Firewall allows using
program-internal state to determine whether that particular
system call should access adversary-accessible or adversary-
inaccessible resources. The proposed policy model associates
program entrypoints, the instructions that invoke the system
call library with whether the expected resource retrieved
should be adversary-accessible or not. However, the entry-
point may be invoked in multiple contexts, some of which

may access different resources, or use name values derived
from multiple data flows, only some of which may be under
adversary control. As a result, the entrypoint alone is insuf-
ficient to express policies to prevent resource access attacks.
In addition, the Process Firewall policy model implicitly de-
pends on the definition of adversary accessibility. However,
we find that there are different types of accessibility that
matter depending on the context. In some cases, the ad-
versary must have write permission to the relevant resource,
but in other cases the adversary only needs read or exe-
cute permissions. The lack of precision and explicit models
of adversary accessibility will likely to errors in preventing
resource access attacks.

In this paper, we present a novel policy model for express-
ing rules to protect processes from resource access attacks,
such as could be enforced by a Process Firewall mechanism.
The policy model is described by a new authorization query
rule, called the resource retrieval query (RRQ), that binds
all of the relevant facets of resource retrieval into a single
concise query. We show that the RRQ enables prevention of
the resource access attacks listed above in a straightforward
way. The main challenges in applying an RRQ policy model
are to make adversary accessibility explicit and determine
adversary control of names used in resource retrieval. First,
we define a novel, role-based approach for describing adver-
sarial roles, which list the permissions that dictate whether
one subject is an adversary of another. Second, we show
how existing work can be applied to compute the data flows
impacting a name value used in resource retrieval. Using
these methods, adversary control of names can be expressed
using concise descriptions, even utilizing entrypoints in some
cases, which we call name control.

In this paper, we make the following contributions:

• We define a policy model for preventing resource access
attacks, whose schema is defined by the resource re-
trieval query (RRQ). In addition to the standard (sub-
ject, object, operation), the RRQ requires an explicit
representation of the adversary model and program
flow to protect the process.

• We define concepts for specifying adversary models
and program flows, called adversarial roles and name
control. The former associates subjects with the per-
missions that define their adversaries, analogously to
a role. The latter specifies the control- or data-flow
impact on the name used in resource retrieval.

• We evaluate the impact of different adversary models
on whether data-flow analysis is necessary to deter-
mine adversary accessibility to names. We find that
over 60% of the entrypoints in which system calls are
invoked can be associated with either adversary-accessible
or adversary-inaccessible resources, but over 90% of
the system call invocations occur on entrypoints where
such a judgement is not possible. Thus, data-flow is
important to preventing resource access attacks.

The remainder of the paper is structured as follows. In
Section 2, we define the problem of resource access attacks.
In Section 3, we examine a variety of efforts to prevent re-
source access attacks to date and the reasons for their fail-
ures. In Section 4, we provide an overview for our approach.
In Section 5, we design a policy model based on the resource

retrieval query (RRQ) to block resource access attacks and
address the challenges in deploying such a model. In Sec-
tion 6, we evaluate the need for adversary models and data-
flow tracking mandated by the RRQ design. In Section 7,
we conclude the paper.

2. RESOURCE ACCESS ATTACKS
Once started, a process often needs additional system re-

sources to execute correctly (e.g., libraries, configuration
files, logs, etc.) and may need to retrieve task-specific re-
sources to complete any task (e.g., web content files, web
requests via sockets, IPCs to worker processes, etc.). We
use the term resource for objects obtained from the operat-
ing system. For convenience, resources are often retrieved by
name, using a method known as namespace resolution [45,
21]. In a namespace resolution, a client (the process) pro-
vides a name to a name server (the operating system), which
retrieves a reference to the resource to which the name maps
via namespace bindings managed by the name server.

Resource access attacks are possible because the names,
namespace bindings, and resources themselves used by the
resolution mechanism may be controlled by adversaries. We
use the code snippet in Figure 1 to demonstrate the possi-
ble problems. First, many processes obtain resources us-
ing names supplied by potential adversaries, particularly
server processes that process client requests. In Figure 1,
the function set_up_socket_dir uses an environment vari-
able SOCKET_DIR to name the directory to be created. If
adversaries can assign SOCKET_DIR, then they could escalate
adversary privilege (i.e., by creating a directory in a location
they are not authorized for) or could control security-critical
operations (i.e., by creating the directory in a location that
is accessible to the adversary). These are examples of un-
trusted search path attacks [16], but other kinds of attacks
such directory traversal and untrusted library load similarly
occur because adversaries can manipulate the names used in
name resolution.

Second, many namespaces allow untrusted parties to spec-
ify the namespace bindings used for resolution. Namespaces
are often designed to enable sharing of resources among sub-
jects to provide flexibility in application deployment, but
such sharing may lead to vulnerabilities if used incorrectly.
For example, the X11 script shown in Figure 1 also cre-
ates a directory of the name SOCKET_DIR in /tmp/.X11-unix,
where /tmp is shared among all processes. Lines 6-8 check if
a file already exists that is not a directory, and, if so, moves
it to create a fresh directory. In Line 9, the programmer
creates the directory, and assumes it will succeed because
the previous code had just moved any file that might exist.
However, because /tmp is a shared directory, an adversary
scheduled in between the moving of the file and the mkdir

might again create a file at /tmp/.X11-unix, thus breaking
the programmer’s expectation. If the file is a link point-
ing to, for example, /etc/shadow, the chmod on Line 11
will make it world-readable. In general, using adversary-
controlled namespace bindings may lead to problems be-
cause adversaries may create bindings that refer to resources
they cannot normally access (e.g., symbolic links to attempt
link traversal attacks [17]). These problems are all difficult to
prevent because adversaries may change namespace bindings
at any time (e.g., to create race conditions in TOCTTOU
attacks [40, 8], as in this case).

Third, adversaries may take advantage of the program’s
ignorance of the namespace and their adversaries’ access to
that namespace to launch attacks. For example, in the at-
tack above, the adversary plants a link at a file name that
the adversary knows that the program will use, /tmp/.X11-
unix. However, an adversary may cause vulnerabilities sim-
ply by creating resources of predictable names in advance
(e.g., squatting attacks [14]). Such resources are under the
adversary, but the victim process may use them without
this knowledge, enabling the adversary to control the victim
process. In Figure 1, the file created right before the mkdir

operation was simply a directory the adversary created, the
adversary could change the content.

As a result, in order to detect attacks during resource re-
trieval, any comprehensive defense must authorize the com-
bination of name, bindings, and resource accessed. Current
defenses only authorize a subset of such items. Defenses for
controlling adversary access to names is limited to ad hoc
filtering, which may be error-prone [4]. Most efforts to block
attacks during resource retrieval focus on preventing time-
of-check-to-time-of-use (TOCTTOU) attacks. Some meth-
ods enforce invariants on the resources accessed [15, 54, 58,
50, 65, 57], some enforce use of namespace bindings [13,
49], and some aim for “safe” access methods [18, 56]. Inter-
estingly, the methods are also distinguished by those that
augment the program [15, 50, 18, 56] and those that extend
the kernel [54, 65, 13, 49, 57, 58]. However, both program
and system methods have been found to be fundamentally
flawed [10, 12]. Program defenses cannot control how the
system allows adversaries to update namespaces and system
defenses lack information about programmer intent about
which resources are expected in any system call. Our goal
in this paper is to address these two limitations by extending
access control to reason about program and system concepts.

3. RELATED WORK
In this section, we examine the reasons that current ac-

cess control models fail to prevent attacks during resource
retrieval. We first examine conventional access control and
then investigate some proposed research access control mod-
els that enable the evolution of permissions as the process
runs.

3.1 Limits of Conventional Access Control
A question is whether conventional access control mecha-

nisms may be sufficient to prevent resource access attacks.
Several commodity operating systems now enforce manda-
tory access control policies [67, 64, 2, 41], but these mech-
anisms cannot prevent such attacks because they grant the
same permissions to all system calls for the same process. An
important characteristic of resource access attacks is that a
resource that is unsafe for a particular victim system call is
safe for some other victim system call. For example, a web-
server can access /etc/passwd legitimately when it wants to
authenticate clients, but it should not do so when serving
a user web page. As a result, other access control mecha-
nisms that restrict permissions process-wide cannot prevent
resource access attacks, such as sandboxes [25, 3, 26, 5].

Capability systems implement an alternative access con-
trol mechanism to those above [36], where the programmer
chooses the capabilities to present to the operating system
to confine access. It has been shown that capability sys-
tems can defeat confused deputy attacks [28], of which some

01 SOCKET_DIR=/tmp/.X11-unix

...

02 set_up_socket_dir () {
03 if ["$VERBOSE" != no]; then

04 log_begin_msg "Setting up X server socket directory"

05 fi

06 if [-e $SOCKET_DIR] && [! -d $SOCKET_DIR]; then

07 mv $SOCKET_DIR $SOCKET_DIR.$$

08 fi

09 mkdir -p $SOCKET_DIR

10 chown root:root $SOCKET_DIR

11 chmod 1777 $SOCKET_DIR

12 do_restorecon $SOCKET_DIR

13 ["$VERBOSE" != no] && log_end_msg 0 || return 0

14 }

01 SOCKET_DIR=/tmp/.X11-unix

...

02 set_up_socket_dir () {
03 if ["$VERBOSE" != no]; then

04 log_begin_msg "Setting up X server socket directory"

05 fi

06 if [-e $SOCKET_DIR]; then

07 mv $SOCKET_DIR $SOCKET_DIR.$$

08 fi

09 mkdir $SOCKET_DIR
10 if [$? -ne 0]; then
11 echo "Unable to create $SOCKET_DIR, possible race!"
12 exit 1
13 fi
14 chmod 1777 $SOCKET_DIR

15 do_restorecon $SOCKET_DIR

16 ["$VERBOSE" != no] && log_end_msg 0 || return 0

17 }

(a) (b)

Figure 1: A code snippet that is vulnerable to resource access attacks that we found in an X11 startup Bash
script in the Ubuntu 11.10 distribution (a), and a possible fix to the TOCTTOU vulnerability (b).

resource access attacks are instances. Some interesting re-
search capability systems have been proposed recently, such
as DIFC systems Flume and HiStar [34, 69], which enable
flexible control of the permissions used by a process. The
problem with capability systems in general is that they push
the problem of access control back onto the programmers,
presenting yet another API for them to solve the complex
problems above. To reduce the complexity on program-
mers, other recent research on capability-like systems, such
as Capsicum [63], relinquishes the flexibility necessary to
control access per system call. While we may yet produce
an API for programmers to manage capabilities effectively,
we propose instead to protect programs from resource access
attacks given the current system call API.

3.2 Limits of Research Models
Researchers have previously identified that some attacks

may not be prevented unless the access control mechanism
accounts for the context in which the program is run. For
example, the Brewer-Nash model (aka Chinese Wall model)
reduces the permissions a process based on its authorized
accesses [11] (e.g., to prevent a conflict of interest). Alter-
natively, the low-water-mark policy (LOMAC) reduces the
permissions of a subject when a lower integrity resource is
retrieved [23] (e.g., to prevent unauthorized modification).
A corresponding high-water-mark policy blocks raises the
secrecy level of subjects when reading higher secrecy data
to prevent leakage [66] and other policies protect both se-
crecy and integrity dynamically [39]. The main limitation
of these approaches is that they still restrict the process as
a single unit, restricting all future accesses.

Researchers have also explored methods for computing
permissions based on temporal or contextual properties of
the process. For example, traditional role-based access con-
trol (RBAC) models [1] were augmented with temporal con-
straints that alter the permissions available to their pro-
cesses [6, 33]. In general, a user may be assigned a set of
roles, but the roles that may be active at any time may de-
pend on the temporal constraints that have been satisfied.
A limitation is that temporal RBAC models apply to all pro-
cesses simultaneously, whereas resource access attacks affect
one process at a time. Alternatively, RBAC models have also
been extended to integrate other contextual factors, such as
trust, in models that are said to perform usage control [51,

52] (UCON). In this model, subjects and objects are associ-
ated with attributes, some of which may be mutable based
on the subject’s access to objects. Authorization require-
ments are checked prior to and throughout a transaction,
which could address attacks that rely on the lack of atom-
icity, such as TOCTTOU attacks. However, as is typical
of conventional access control, UCON (and temporal RBAC
models as well) guess at the programmer intent using factors
external to the program execution, such as time and system
events. In addition, UCON does not reason about how the
permissions of other subjects (one’s adversaries) may impact
whether a resource access should be authorized.

Researchers have also explored methods to reason about
permissions by using the program’s control or data flow. For
example, stack introspection uses the principals responsible
for each function on a call stack to deduce the permissions
for an operation, such as a resource retrieval [27, 62]. Such
methods reason about the security labels of code, but to pre-
vent resource access attacks one must reason about other
factors: the data (i.e., used to build names), namespace
bindings, or system resources that may be under adversary-
control. Alternatively, researchers have developed methods
to control access using the program’s data flow, enforcing in-
formation flow [19, 43]. These methods enable fine-grained
reasoning about information flow, which is often difficult for
programmers to get right [29], whereas our focus is only on
the construction of names for retrieving resources. In addi-
tion, these methods do not reason about the implications of
bindings on resource retrieval.

3.3 An Alternative: The Process Firewall
Recent work proposed that resource access attacks could

be prevented by detecting whether the bindings used and
resource accessed in name resolution are unsafe for the “pro-
gram context” at the time of a name resolution system call,
enforced by a kernel mechanism called the Process Fire-
wall [61]. Unsafe accesses were detected using the“adversary
accessibility” of the bindings used and resource retrieved in
name resolution. For a program context that expected an
adversary-accessible resource (e.g., HTML file), the Process
Firewall prevents retrieval of resources that are not acces-
sible to program adversaries blocking confused deputy at-
tacks [28]. For a program context that expected an adversary-
inaccessible resource (e.g., password file), the Process Fire-

wall prevents retrieval of resources that are accessible to pro-
gram adversaries limiting the program attack surface [31].
The Process Firewall could also prevent TOCTTOU attacks
by restricting multiple program contexts to the same re-
source.

The Process Firewall is an extension to the SELinux Linux
Security Module, which compares resource access system
calls authorized by SELinux using a modified version of ipt-
ables [38]. The Process Firewall is capable of providing dif-
ferent protections for each system call invocation based on
the rules that apply for the current process state (e.g., its
call stack), the prior system calls that have been executed
by the process, and the current state of the system resource
namespace. Because the Process Firewall controls the sys-
tem resources that individual system call invocations may
access, the Process Firewall is analogous to a firewall for the
system call interface. Even though the system call inter-
face is much lower latency than the network interface, the
Process Firewall incurs only a 2-4% overhead for a variety
of macrobenchmarks while enforcing a rulebase of over 1000
rules.

While Process Firewall is capable of preventing resource
access attacks efficiently, there is a significant challenge in
policy modeling. First, the Process Firewall requires a pre-
cise definition of “process context,” but this is not a concept
in with a precise meaning in general. Cai et al. [12] state
that a system defense must understand the “programmer
intent” to correctly block resource access attacks, but that
information is not available. The program “entrypoint”1 for
Process Firewall policies, where runtime analysis was used
to classify the entrypoints that always accessed adversary-
accessible and adversary-inaccessible resources. However,
the Process Firewall experiments exhibited some false pos-
itives where entrypoints may be misclassified. Also, there
may be many entrypoints that retrieve resources both ac-
cessible and inaccessible to adversaries. Second, the Pro-
cess Firewall requires a precise definition of “adversary ac-
cessibility”, but there is not a consensus for this concept’s
meaning. Researchers often apply some notion of a threat
model, identifying those resources controlled (e.g., modifi-
able) by an adversary, but each experiment may propose
its own threat model. Even where threat models are com-
puted automatically, different methods are proposed. For
example, researchers have proposed multiple automated ap-
proaches for computing the resources that are untrusted by
each system subject from available discretionary and manda-
tory access control policies [53, 13, 32, 60].

4. SOLUTION OVERVIEW
To build a policy model for preventing resource access at-

tacks, we want to identify the fundamental principles behind
the enforcement policies of the Process Firewall, generalize
those principles, and finally simplify the articulation of pol-
icy decisions over those principles. To do this, we examine
the novel perspective of the Process Firewall design is shown
in Figure 2. First, unlike information flow security models,
such as Biba integrity [7], the Process Firewall allows pro-
cesses to retrieve resources controlled by their adversaries,
without impacting the permissions of the process overall, un-
like LOMAC [23] and other dynamic models [39]. Second,

1A program entrypoint was said to be an instruction that
invoked the system call library.

unlike capability systems [36] and recent work on decentral-
ized information flow control [34, 69], the Process Firewall
enables enforcement of different policies for individual sys-
tem call invocations, but it does not require program modi-
fications for such enforcement. Instead, the Process Firewall
protects processes during resource retrieval by introspecting
into both the system to determine “adversary accessibility”
and the process to estimate the “program context” for en-
forcing rules that deny unsafe retrievals. The Process Fire-
wall authors show that introspection can be used to protect
the process because even if a malicious process tampers with
such information to spoof the Process Firewall, conventional
access control is still able to confine the process using the
original permissions.

As a result, Process Firewall policies must articulate both
the “process context” and “adversary accessibility” over each
system call invocation. To reason about adversary acces-
sibility and process context, the Process Firewall proposed
extending the traditional authorization query to the rule for-
mat below:

pf invariant(subject, entrypoint, resource ID,
object, adversary access, operation)→ Y|N|log

Note that the subject, object, and operation correspond
to the normal inputs to an authorization query. In addition,
pf_invariant extends this query with the following argu-
ments: (1) the entrypoint, which is the program instruction
that invokes the system call library for this system call invo-
cation; (2) the resource ID, which restricts the resource to
a specific ID to prevent TOCTTOU attacks [40, 8]; and (3)
adversary access, which is whether the binding or resource
is accessible to process adversaries or not2. The entrypoint
and resource ID specify requirements on the process context
and the adversary access specifies requirements on bindings
and the retrieved resource for authorization or denial of the
requested operation.

However, as noted in the previous section, while this lan-
guage for Process Firewall policies enabled the prevention
of a variety of resource access attacks, it is prone to both
false positives and false negatives. The ad hoc nature of
this policy language is the contributing factor to both prob-
lems. This languages lacks the generality to express either
the program context or adversary accessibility sufficiently
to block attacks. However, a concern is that once a general
policy language is identified it may be far too complex for
policy writers or, importantly in this case, automated tools
to produce policies. Fortunately, we have identified some in-
sights, which we highlight below, that motivate our design of
policy model that enables prevention of resource access at-
tacks broadly, where the policies may be simplified in many
cases.

Expressing the process context requires identifying whether
the particular name resolution is expected to retrieve an
adversary-accessible resource or not. The Process Firewall
paper used only the entrypoint to express the process con-
text for each system call invocation. This limitation led to

2The input syscall trace has been removed from this discus-
sion for simplicity, but was part of TOCTTOU defenses. We
capture all the information necessary to prevent TOCTTOU
attacks by logging resource IDs in the “check” operation and
validating them in the “use” operation. We describe this in
detail in Section 5.2.

Process Firewall

Security: Resource
 Access
Changes: None
False Pos: Can Be 0
Syscalls: Same

POSIX API

Security: Incomplete
Changes: Many
False Pos: Rare
Syscalls: Many

Capabilities

Security: Resource
 Access
Changes: Very Many
False Pos: Rare
Syscalls: Almost Same

Program
Only

System
Only

System API
into Program

Program API
into System

Program to Reason
about Security Intent

System to Reason
about Program Intent

Access Control

Security: Not Resource
 Access
Changes: None
False Pos: Fundamental
Syscalls: Same

Figure 2: Resource access protection continuum. Until recently no system enforcement mechanisms intro-
spected into the process to protect it from vulnerabilities.

two causes for false positives: different control flow and ad-
versary control of data flow. In one case, a library (that per-
forms system calls) is invoked from multiple callers, but only
occasionally does a caller provide a name for an adversary-
accessible file. In the other case, the dynamic analysis only
tested cases where a particular program entrypoint retrieved
files protected from adversaries, but in some rare cases that
entrypoint uses adversary input to retrieve files accessible to
adversaries. We suggest that the adversary-accessibility of
the resource the program intends to retrieve in each system
call invocation depends on whether the adversary controls
the name of the resource. This is the “process context” that
we need to determine to decide whether a retrieved resource
is unsafe. In general, determining adversary control of a
variable is a data flow problem [19]. However, we find that
for many entrypoints, all the data flows leading to that en-
trypoint are either adversary controlled or not, meaning that
we need not track the data flow at runtime in these cases.
However we wish to detect whether a name is controlled by
an adversary or not, the Process Firewall needs to reason
about adversary control of names.

Expressing adversary accessibility is conceptually simpler
in general, but harder to automate in practice. Conceptu-
ally, if an adversary is authorized to perform the requested
operation on the resource retrieved, then the resource is
adversary-accessible. However, it would be a tedious task
to identify the individual resources that may be accessible
to adversaries. Researchers have found that the resources
accessible to adversaries can be computed from the set of
adversaries and the access control policy [53, 13, 32, 60],
so we focus on a policy model that expresses adversaries.
However, as we mentioned in the last section, there is no
agreed-upon method for selecting the adversaries of each
process, and selecting them individually would also be te-
dious. Instead, leverage the notion that researchers had a
high-level principle behind their choice of adversaries, so we
aim for the Process Firewall to reason about the the method
for identifying adversaries rather than the individual adver-
saries.

5. POLICY MODEL DESIGN
In this section, we generalize the authorization rule pro-

posed originally for the Process Firewall [61] to enable more
accurate control during resource retrieval with less likeli-
hood of false positives. In Section 5.1, we propose a new
authorization rule, called a resource retrieval query (RRQ),

and show how it can prevent the various types of resource
access attacks in Section 5.2. In Section 5.4, we show how
to express adversary control of names in terms of flow state-
ments. Finally, in Section 5.3, we show how to express the
adversaries of a process using adversarial roles.

5.1 Resource Retrieval Queries
The goal is to block processes from retrieving resources

that can only lead to resource access attacks. We find that
in general we need to know: (1) whether the name resolu-
tion process is under adversary control and (2) whether the
retrieved resource is adversary accessible or not.

To understand exactly what we mean it is necessary to
have precise definitions for adversary control and adver-
sary accessibility. In general, adversaries may control the
inputs to a name resolution, names and bindings, and be
authorized to access the output of name resolution, the re-
source retrieved. For inputs, a name or binding is adversary-
controlled if the adversary is authorized to modify the source
of that input. For names, if an adversary can modify any
of the resources from which the name is constructed, then
the adversary is said to control that input. For bindings, if
an adversary can modify the filesystem links (e.g., directo-
ries and symbolic links) used in a name resolution, then the
adversary is said to control the binding. For outputs, a re-
source is adversary-accessible if the adversary is authorized
to perform the requested operation on the retrieved resource.
If an adversary is only authorized to read a resource, then
a system call that retrieves a resource for writing would be
considered inaccessible to that adversary.

On every system call that performs name resolution, we
propose to query both conventional access control (for con-
finement and some protection) and perform a second query
designed to prevent resource access attacks, called a resource
retrieval query (RRQ). We define the format of the RRQ be-
low.

RRQ(subject, adversarial role, object, name control,
object control, operation)→ Y|N|log

Like pf_invariant, the RRQ specifies the conditions un-
der which a resource retrieval is deemed unsafe, where the
default assumption is that an operation is safe (i.e., after
all it has been authorized by the traditional access control
policy). Note that this semantics is analogous to that of a
traditional network firewall, where the default is to allow the
traffic.

Our definition of RRQ makes the following changes rela-
tive to pf_invariant. First, the RRQ associates each sub-
ject with its adversarial role, which explicitly identifies the
threat model used for identifying this subject’s adversaries.
That is, the subject’s adversarial role explicitly relates the
system call’s subject to the other system subjects who may
threaten it by identifying the permission sets accessible to
non-adversaries. The adversarial role is used to identify ad-
versary control of names and bindings and adversary acces-
sibility of resources. Second, we express adversary control
of names using name control, which associates a control or
data flow of the program with the authorized bindings and
resources for that flow (via object control below). Note that
the entrypoint is one instance of a name control value, as
it implies a single node flow graph. Importantly, we show
that in some cases complex data or control-flow relation-
ships may be reduced to a simpler representation, even down
to an entrypoint alone, without loss of information. Fi-
nally, we change the argument adversary accessibility from
pf_invariant into object control. Object control simply
specifies a constraint on the authorized resources given a
name control’s flow. Normally, object control will either
specify that adversary-accessible or adversary-inaccessible
resources may be authorized given a name control flow. Note
that the object being authorized is either a binding or a re-
source3, where the operation being performed uniquely iden-
tifies whether the object is a binding or a resource. We note
that the resource ID field of pf_invariant is folded into the
object control by expressing further constraints on the ob-
jects that may be accessible given a flow and optionally prior
resources retrieved (e.g., to prevent TOCTTOU attacks).

When an RRQ query is run, the enforcement mechanism
(e.g., Process Firewall) uses the subject and adversarial role
to determine whether the object (binding or resource) being
authorized is unsafe and must be blocked. First, the en-
forcement mechanism will determine whether a name con-
trol rule matches the control (e.g., call stack) or data flow
(e.g., variable taints) that the program used to retrieve the
resource for that system call invocation. If so, then the en-
forcement mechanism will compare the object control value
to the RRQ’s object (i.e., bindings used or resource retrieved
depending on the operation) to determine whether the ob-
ject matches the object control requirement. If so, then the
rule’s action is taken (accept, deny, etc.).

5.2 Preventing Attacks with RRQs
In this section, we show that confused deputy, expanded

attack surface, and TOCTTOU attacks can be blocked using
RRQs.

For a confused deputy attack [28], the problem is that an
adversary in control of a name and/or binding can redirect
the victim to a resource that is not accessible to the adver-
sary. First, consider the case where the name is controlled
by an adversary. Using RRQs, we identify the name control
flows where the name is controlled by an adversary. If such a
flow matches, then an adversary-inaccessible resource would
be unsafe, so the RRQ object control would specify “adver-
sary accessible” for a “deny” rule. Note evaluating adversary
control of bindings is not necessary for the decision.

3An operating system will perform an authorization for each
binding in the pathname and the final resource separately.
Thus, each authorization will evaluate access to either a
binding or a resource.

Second, consider the case where the name is not controlled
by an adversary, but the name resolution uses an adversary-
controlled binding. Normally, we would expect to retrieve
an adversary-inaccessible resource, but the the use of an
adversary-controlled binding to retrieve such a resource may
enable a victim to be redirected to an unexpected resource.
Using RRQs, the object control would specify “adversary
accessible” bindings for a “deny” rule. This defense was im-
plemented as a library function called “safe-open” by Chari
et al. [13].

For an expanding attack surface attack [31], the problem
is that an adversary is in control of a resource, but not the
name. Using RRQs, we identify the name control flows when
the adversary does not control the name and associate those
with the object control where the resource is “adversary ac-
cessible” for a “deny” rule. Such a rule would be in used
in combination with the “safe-open” RRQ above to prevent
multiple possible attacks in one system call invocation.

Finally, TOCTTOU attacks occur because an adversary
can change the bindings used in name resolution to direct the
victim to a different resource, even when the same name is
used. Using RRQs, we identify a name control flow that uses
a name that will reused. An RRQ can log the resource in an
object control specification of the rule when the log directive
is provided. Other RRQs define the name control flows when
that object control will be enforced. In these RRQs, the
object control will be the resource logged previously.

The power of the RRQ approach lies in the adversarial
role and name control, which are not specified in the exam-
ples above. The adversarial role enables precise specifica-
tion of the meaning of adversary controlled and adversary
accessible relative to a role (i.e., set of permissions). As we
can see above, knowledge about adversary control and ad-
versary accessibility is fundamental to preventing resource
access attacks. In addition, the name control enables pre-
cise specification of adversary control of names, which was
missing in the Process Firewall’s rule language. As we can
see above, knowledge of the adversary’s control of names is
fundamental to reasoning about resource access attacks. We
examine how to use both of these concepts in the following
subsections.

5.3 Defining Adversaries
To compute adversary control and adversary accessibility,

we first need to identify the subjects who are adversaries.
Given a set of adversarial subjects and an access control
policy, researchers have shown that they can compute the
permissions (resources and operations) that enable adver-
sary control and accessibility [53, 13, 32, 60].

To help guide our thinking, we first review how researchers
have applied adversary accessibility in experiments previ-
ously. For example, researchers have long used user IDs
in discretionary access control systems to distinguish friend
from foe [53, 13]. In these experiments, all processes trust
root processes and those running under the same user ID. If
processes running under other user IDs (except root) may
modify the input used to build names, the bindings used
in name resolution, and/or the end resource retrieved, then
caution must be observed during resource retrieval. Simi-
larly, researchers have applied a variant of this idea to manda-
tory access control (MAC) policies, using the subject labels
as the guide [32]. Since MAC policies aim to reduce the priv-
ileges of root processes, a problem is that it is more difficult

to identify which subject labels that run root code are trust-
worthy. Researchers have proposed a threat model whereby
processes running under a particular subject label only trust
processes that have permissions to modify their executable
code or write to kernel memory [60] (applied transitively).
Interestingly, this threat model was found to correspond well
to reported vulnerabilities. That is, these relatively simple
threat models have proven useful for experimentation.

A problem has been that researchers have not been con-
vinced that these simple threat models used in experiments
can be used in practice to prevent attacks without caus-
ing numerous false positives. The problem has been that
just identifying where an adversary has access to a bind-
ing or a resource is insufficient to detect an unsafe ac-
cess. Consider the confused deputy attack [28]. If the
process uses adversary-inaccessible bindings to retrieve an
adversary-inaccessible resource, it may still be unsafe if the
adversary controls the name used. Thus, adversary acces-
sibility of system objects (bindings and resources) must be
combined with adversary accessibility of program objects
(names) to reason about resource access attacks compre-
hensively. Thus, the combination of system and program is
required to leverage adversary accessibility effectively.

A second problem is that administrators did not have any
guidance for selecting adversaries for a program. However,
as prior research has shown there are a few simple and ef-
fective ways of describing the adversaries of a program. In
this paper, we highlight three such cases, which we will ex-
press below using adversarial roles. First, researchers have
often employed the notion that processes running with your
user ID and a root user ID are trusted, which we call the
root role, such as used previously in DAC systems [53, 13].
This approach reflects some practical issues in trust. All
processes must trust root processes, and any process with
the same user ID can perform the same operations. Second,
researchers recently proposed an approach for identifying
trusted subjects in MAC policies, where one subject only
trusts the MAC subjects that may write to kernel mem-
ory or their executable code [60], which we call the local
role. The advantage of this approach is that it also con-
siders the practical issues of trust. Any process that can
modify kernel memory or your processes’s executables must
be trusted. Third, researchers have proposed adversaries
directly as those processes with network access, which we
call the remote role. Some conventional operating systems
employ a policy where only network-facing daemons are un-
trusted [47, 48]. This approach differs from the ones above in
that it focuses on adversaries rather than trusted processes,
although the number of adversaries is smaller in practice.

In formulating an approach to express adversarial roles
we highlight three facts. First, whether a subject is an ad-
versary does depend on the permissions they hold. Second,
some permissions may indicate that the subject is trusted
whereas others identify the subject as an adversary. Third,
some of these permissions are subject-specific, such as the
permissions to modify the subject’s executable code files.
As a result, we define an adversarial role relative to a sub-
ject s as AR(s) = (P, f(s,P), {t,a}), where P is a set of
permissions, f(s,P) is a function that computes subject-
specific permissions from the access control policy P, and
{t, a} identifies whether possession or lack of those permis-
sions makes one an adversary. For example, local role above
includes a set of permissions to write to kernel objects in

P and subject-specific permissions to their executable code
files f(s,P)4, where the subjects with those permissions are
the only trusted subjects {t}. As in role-based access con-
trol, administrators could predefine such roles. In practice,
we expect that the number of adversarial roles in use will
be modest, enabling such adversarial role definitions to be
reused across deployments, as roles can be reused for multi-
ple users.

5.4 Expressing Name Control
In general, whether a resource retrieval is unsafe or not re-

quires knowledge about the adversary’s control of the names
used in resource retrieval. Our goal is to define a method
for specifying whether a name is adversary-controlled or not
using the program constructs. However, as described above,
program entrypoint is too limited to express adversary con-
trol of names in all cases. Nonetheless, where an entrypoint
is sufficient to express adversary accessibility, we would like
our specification to “compile” into an entrypoint.

Whether a name may be modified by an adversary is fun-
damentally a data flow problem. For example, Denning de-
fines an information flow model for programs [19] that is
sufficient to identify whether the value of a name variable
is controlled by an adversary of a program statically. This
model has been applied to develop automated methods [43]
to determine whether the security requirements of a “chan-
nel” in which a variable is used (e.g., a resource retrieval
system call) complies with the security requirements of the
variable itself (e.g., an adversary-controlled name).

In this context, we could apply static program information
flow analysis [43] to determine whether all the data flows to
a name variable at a system call entrypoint include data
from an adversary controlled input (e.g., file). Conversely,
we could use static program analysis to determine whether
no data flow to a name variable at a system call entrypoint
includes data from an adversary controlled input. In either
case, then knowledge of the entrypoint alone is sufficient
to identify whether the name is adversary-controlled or not,
enabling enforcement using the Process Firewall rules in Sec-
tion 4. Thus, where static analysis can prove the adversary
control of an resource retrieval entrypoint in all cases, the
entrypoint is sufficient for RRQ rules as well.

However, not all information flows may be derived stati-
cally, as some names may only be under adversary control
some of the time. For example, some names may be derived
from inputs that may sometimes originate from adversary-
controlled files and sometimes not. In this case, program
information flow analysis utilizes runtime labels [42]. Such
analysis would log the runtime labels of files that may be
used to provide name input and determine the label of the
name variables at name resolution system calls. This ap-
proach has been leveraged to connect program information
flow with system labels for SELinux [30]. Using this method,
adversary control of names is determined at runtime, which
the enforcement mechanism can then extract to enforce the
RRQs. For the prior work, APIs were designed to enable
information flow-aware programs (in the Jif language [44])

4In an SELinux policy [55], executable files have a special la-
bel that distinguishes them from regular files. The SELinux
policy also specifies the subject labels that may execute
those files. If this subject can execute a file of a particu-
lar object label, then permission to modify that file (label)
is added to the adversarial role [60].

to retrieve the necessary labeling information from SELinux
to authorize access (in the traditional manner). As shown in
Figure 2, the Process Firewall works in the opposite direc-
tion by extracting program context (the label of the name
variable) from the program memory. However, this can eas-
ily be done by creating a map in program memory between
the name variable at the entrypoint and the label of the vari-
able. Thus, the RRQ name controls associate the variable,
entrypoint and adversary-control status expected to dictate
the allowed adversary accessibility.

A practical problem is that very few programs are writ-
ten in the Jif programming language. In practice, dynamic
taint analysis [68, 22] would be used to determine whether
an adversary-controlled a name variable. However, full dy-
namic taint analysis is very expensive. Fortunately, we are
only interested in a few variables, but unfortunately, many
complex data flows may impact their values. Dynamic taint
analyses have been designed to distinguish between different
(adversary-controlled and not) sources [9, 46, 68]. However,
taint analysis does not handle certain kinds of information
flow (implicit flows), meaning that it is currently less accu-
rate than the information flow analysis above. Nonetheless,
using dynamic taint analysis techniques, we can write the
same RRQ rules.

Finally, note that programmers may want to use application-
specific sanitization to untaint a flow that has a dependence
on adversary input. Information flow analysis uses endorsers
to remove adversary control from data, whereas taint analy-
ses also support this in a somewhat more ad hoc way. Note
that with above analyses, RRQs could be generated auto-
matically, excepting for such sanitization operations.

6. EVALUATION
In this section, we evaluate the impact of different ad-

versary models on the use of the entrypoint alone to de-
scribe name controls. This study was performed on a newly-
installed Ubuntu 12.04 Desktop filesystem protected by the
SELinux reference policy [55]. The analysis data was pro-
duced using a runtime analysis driven by Linux package test
suites and normal use. As runtime analysis is inherently
incomplete, this analysis provides an upper bound for the
number of entrypoints that may be classified as accessing
only one type of resource.

Under that limitation, we notice three interesting trends.
First, as shown in Table 1, the adversary model has a signifi-
cant impact on the ability to classify entrypoints. Second, in
all models, a significant number of entrypoints are classified
as either retrieving only adversary-accessible or adversary-
inaccessible resources. In those cases, RRQs can use the
entrypoint for name control. However, Table 2 shows that
a vast majority of the individual system call invocations are
made at entrypoints that retrieve both adversary-accessible
and adversary-inaccessible resources. This shows that it is
important that RRQs handle data flow in a more flexible
way for the remaining entrypoints, as they are most often
used.

Adversary Models. We evaluate three different adver-
sary models: one based on the DAC policy, and two based
on SELinux MAC policies. All of them assume both remote
and local adversaries. In the DAC adversary model (Root
from Section 5.3), a user ID has as adversaries all other user
IDs, excepting the superuser root. This model holds for sys-
tems that use only DAC to control access. The first MAC

Adversary Adv. Acc Adv. Inacc Both
Model Resources Resources

Root 8334 360 2371
Local 5436 1675 3954
User 8652 880 1533

Table 1: Adversary accessibility for entrypoints.

Defense Rule Invoked Syscalls %

Only adv. inacc. Root 439379 9.40%
Local 29017 0.62%
User 74716 1.6%

Only adv. acc. Root 582 0.01%
Local 2035 0.04%
User 1073 0.02%

safe open Root 138825 3.0%
Local 1019481 21.8%
User 119560 2.5%

Total 4671037 –

Table 2: The number and percentage of system calls
for which the entrypoint alone is sufficient to prevent
resource access attacks.

adversary model [60] (Local from Section 5.3) assumes only
a minimal system and application trusted computing base.
This model is conservative; for example, network daemons
are adversarial to the local system. This scenario holds when
network daemons are broken into, and try to further esca-
late privileges. The second MAC adversary model (User)
assumes only two subjects – user_t and guest_t (assigned
to unprivileged users) – and all the resources modifiable by
these two subjects, untrusted. This corresponds to adver-
sarial local users who have a login to the system and are
constrained by MAC policies.

Sufficiency of Entrypoint Context. In Table 1, we
show the number of entrypoints that retrieve only adversary-
accessible resources, only adversary-inaccessible resources,
or both, for the three different adversary models.

This table shows that under the Root, Local and User
models, we can classify 78.5%, 64.2% and 86.1% of en-
trypoints respectively as accessing either only adversary-
accessible resources or only adversary-inaccessible resources.
Thus, it appears likely that a significant portion of RRQs can
use entrypoints to describe name controls.

System Call Frequency. We examine the distribution
of system calls relative to those that can be protected us-
ing name controls specified by entrypoint. This tells us the
number of system calls, regardless of entrypoint, for which
the entrypoint alone is sufficient to describe the program
data flow. Table 2 shows the number of times a system
call associated with that classification was invoked. In this
case, we also include safe open defenses which do not require
knowledge of the adversary control of names for comparison.

Table 2 shows that only a small percentage of the system
calls are run using entrypoints that only access adversary-
accessible or adversary-inaccessible resources. On examin-
ing the cause for the low percentages, we found that many
system calls are made through a few commonly invoked en-
trypoints, and most of these commonly invoked entrypoints

0

100000

200000

300000

400000
N

u
m

b
e
r

o
f

in
v
o
ca

ti
o
n
s

o
f

e
n
tr

y
p

o
in

t

Both
Either high or low

Figure 3: Number of Invocations per Entrypoint

use both adversary-accessible and adversary-inaccessible re-
sources. This is shown in Figure 3. Many of these en-
trypoints belong to common programs; for example, the
50 most commonly invoked entrypoints belonged to either
the Python or Bash interpreter. For these entrypoints, the
RRQ’s name controls should in addition be based on knowl-
edge of program data flow.

7. CONCLUSIONS
In this paper, we presented a policy model to prevent re-

source access attacks. While a variety of methods have been
proposed, this is the first method to make explicit all aspects
of resource retrieval: adversaries, using adversary roles; ad-
versary control of the names used in resource retrieval, using
name controls; the adversary control of the bindings used
in name resolution; and adversary access to the resource
retrieved. In particular, we focus on the challenges of ad-
versary roles and name control via program flows, defining
simple models for expressing each that leverages a variety of
prior work. Our evaluation shows both that the adversary
models chosen make a significant difference how resource ac-
cess attacks must be prevented and that data-flow tracking
is fundamental to a comprehensive defined for resource ac-
cess attacks. Often, well over 90% of the individual system
calls require data-flow tracking to prevent resource access
attacks accurately.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the Air

Force Office of Scientific Research (AFOSR) under grant
AFOSR-FA9550-12-1-0166. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

9. REFERENCES
[1] RBAC ’98: Proceedings of the Third ACM Workshop

on Role-based Access Control, New York, NY, USA,
1998. ACM. Chairman-Youman, Charles and
Chairman-Jaeger, Trent.

[2] Solaris Trusted Extensions Developer’s Guide.
http://docs.sun.com/app/docs/doc/819-7312, 2008.

[3] A. Acharya and M. Raje. MAPbox: Using
parameterized behavior classes to confine untrusted
applications. In Proceedings of the 9th USENIX
Security Symposium, August 2000.

[4] D. Balzarotti et al. Saner: Composing static and
dynamic analysis to validate sanitization in web
applications. In Proceedings of the IEEE Symposium
on Security and Privacy, 2008.

[5] A. Berman et al. TRON: Process-specific file
protection for the UNIX operating system. In
USENIX TC ’95, 1995.

[6] E. Bertino, P. A. Bonatti, and E. Ferrari. Trbac: A
temporal role-based access control model. ACM
Transactions on Information and System Security
(TISSEC), 4(3):191–233, 2001.

[7] K. J. Biba. Integrity considerations for secure
computer systems. Technical Report MTR-3153,
MITRE, April 1977.

[8] M. Bishop, M. Dilger, et al. Checking for race
conditions in file accesses. Computing systems,
2(2):131–152, 1996.

[9] BitBlaze. BitBlaze binary analysis project.
http://bitblaze.cs.berkeley.edu, 2014.

[10] N. Borisov et al. Fixing races for fun and profit: How
to abuse atime. In USENIX Security ’06, 2005.

[11] D. F. C. Brewer and M. J. Nash. The Chinese Wall
security policy. In Proceedings of the IEEE Symposium
on Security and Privacy, 1989.

[12] X. Cai et al. . Exploiting Unix File-System Races via
Algorithmic Complexity Attacks. In IEEE SSP ’09,
2009.

[13] S. Chari, S. Halevi, and W. Venema. Where do you
want to go today? escalating privileges by pathname
manipulation. In NDSS, 2010.

[14] E. Chin et al. Analyzing Inter-Application
Communication in Android. In MobiSys, 2011.

[15] C. Cowan, S. Beattie, C. Wright, and
G. Kroah-Hartman. Raceguard: Kernel protection
from temporary file race vulnerabilities. In USENIX
Security Symposium, pages 165–176, 2001.

[16] CWE. CWE-426: Untrusted Search Path.
http://cwe.mitre.org/data/definitions/426.html.

[17] CWE. CWE-59: Improper Link Resolution Before File
Access.
http://cwe.mitre.org/data/definitions/59.html.

[18] D. Dean and A. J. Hu. Fixing races for fun and profit:
How to use access (2). In USENIX Security
Symposium, pages 195–206, 2004.

[19] D. Denning. A lattice model of secure information
flow. Communications of the ACM, 19(5):236–242,
1976.

[20] J. B. Dennis and E. C. V. Horn. Programming
semantics for multiprogrammed computations.
Communications of the ACM, 9(3):143–155, 1966.

[21] Domain Names - Implementation and Specification.
http://http://www.ietf.org/rfc/rfc1035.txt.

[22] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy

monitoring on smartphones. In OSDI, volume 10,
pages 1–6, 2010.

[23] T. Fraser. LOMAC: Low water-mark integrity
protection for COTS environments. In Proceedings of
the 2000 IEEE Symposium on Security and Privacy,
May 2000.

[24] Mandatory Access Control - FreeBSD.
http://www.freebsd.org/handbook/mac.html.

[25] T. Garfinkel et al. Ostia: A delegating architecture for
secure system call interposition. In NDSS ’04, 2004.

[26] Goldberg et al. A secure environment for untrusted
helper applications. In USENIX Security ’96, 1996.

[27] L. Gong, R. Schemers, and S. Microsystems.
Implementing protection domains in the java
development kit 1.2, 1988.

[28] N. Hardy. The confused deputy:(or why capabilities
might have been invented). ACM SIGOPS Operating
Systems Review, 22(4):36–38, 1988.

[29] B. Hicks, K. Ahmadizadeh, and P. McDaniel. From
Languages to Systems: Understanding Practical
Application Development in Security-typed
Languages. In Proceedings of the 22nd Annual
Computer Security Applications Conference (ACSAC),
December 2006.

[30] B. Hicks, S. Rueda, T. Jaeger, and P. McDaniel. From
trusted to secure: building and executing applications
that enforce system security. In USENIX Annual
Technical Conference, June 2007.

[31] M. Howard, J. Pincus, and J. Wing. Measuring
Relative Attack Surfaces. In Proceedings of Workshop
on Advanced Developments in Software and Systems
Security, December 2003.

[32] T. Jaeger, R. Sailer, and X. Zhang. Analyzing
integrity protection in the SELinux example policy. In
Proceedings of the 12th USENIX Security Symposium,
Aug. 2003.

[33] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor.
A generalized temporal role-based access control
model. IEEE Trans. on Knowl. and Data Eng.,
17(1):4–23, Jan. 2005.

[34] M. N. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information flow
control for standard OS abstractions. In Proceedings of
the 21st ACM Symposium on Operating Systems
Principles (SOSP), October 2007.

[35] B. W. Lampson. Protection. ACM SIGOPS Operating
Systems Review, 8(1):18–24, 1974.

[36] H. M. Levy. Capability-based Computer Systems.
Digital Press, 1984. Available at http:

//www.cs.washington.edu/homes/levy/capabook/.

[37] T. A. Linden. Operating system structures to support
security and reliable software. ACM Computing
Surveys, 8(4):409–445, Dec. 1976.

[38] R. Marmorstein and P. Kearns. A Tool for Automated
iptables Firewall Analysis. In Proceedings of the
USENIX Annual Technical Conference, 2005.

[39] D. McIlroy and J. Reeds. Multilevel windows on a
single-level terminal. In Proceedings of the (First)
USENIX Security Workshop, Aug. 1988.

[40] W. S. McPhee. Operating system integrity in
OS/VS2. IBM Syst. J., 13:230–252, September 1974.

[41] MSDN. Mandatory Integrity Control (Windows).
http://msdn.microsoft.com/en-

us/library/bb648648%28VS.85%29.aspx.

[42] A. C. Myers. Jflow: Practical mostly-static
information flow control. In In Proc. 26th ACM Symp.
on Principles of Programming Languages (POPL),
pages 228–241, 1999.

[43] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In Proceedings of the 16th
ACM Symposium on Operating System Principles,
October 1997.

[44] A. C. Myers and B. Liskov. Protecting privacy using
the decentralized label model. ACM Trans. Softw.
Eng. Methodol., 9:410–442, October 2000.

[45] R. Needham. Chapter: Names. In S. Mullender (Ed):
Distributed Systems. Addison-Wesley, 1989.

[46] J. Newsome and D. X. Song. Dynamic taint analysis
for automatic detection, analysis, and
signaturegeneration of exploits on commodity
software. In Proceedings of the 2005 Network and
Distributed System Security Symposium, 2005.

[47] AppArmor Linux application security.
http://www.novell.com/linux/security/apparmor/,
2008.

[48] Security-enhanced linux targeted policy.
http://www.centos.org/docs/5/html/Deployment_

Guide-en-US/rhlcommon-chapter-0001.html.

[49] OpenWall Project - Information security software for
open environments. http://www.openwall.com/, 2008.

[50] J. Park, G. Lee, S. Lee, and D.-K. Kim. Rps: An
extension of reference monitor to prevent race-attacks.
In PCM (1) 04, 2004.

[51] J. Park and R. Sandhu. Towards usage control models:
Beyond traditional access control. In Proceedings of
the Seventh ACM Symposium on Access Control
Models and Technologies, SACMAT ’02, pages 57–64,
New York, NY, USA, 2002. ACM.

[52] J. Park and R. Sandhu. The UCONABC usage control
model. ACM Trans. Inf. Syst. Secur., 7(1):128–174,
Feb. 2004.

[53] C. Pu and J. Wei. A Methodical Defense against
TOCTTOU Attacks: The EDGI Approach. In ISSSE,
2006.

[54] K. suk Lhee and S. J. Chapin. Detection of file-based
race conditions. Int. J. Inf. Sec., 2005.

[55] Reference Policy.
http://oss.tresys.com/projects/refpolicy, 2008.

[56] D. Tsafrir, T. Hertz, D. Wagner, and D. Da Silva.
Portably solving file tocttou races with hardness
amplification. In FAST, volume 8, pages 1–18, 2008.

[57] E. Tsyrklevich and B. Yee. Dynamic detection and
prevention of race conditions in file accesses. In
Proceedings of the 12th USENIX Security Symposium,
pages 243–255, 2003.

[58] P. Uppuluri, U. Joshi, and A. Ray. Preventing race
condition attacks on file-systems. In SAC-05, 2005.

[59] C. Vance, T. Miller, R. Dekelbaum, and A. Reisse.
Security-enhanced darwin: Porting selinux to mac os
x. In Proceedings of the Third Annual Security
Enhanced Linux Symposium, Baltimore, MD, USA,
2007.

[60] H. Vijayakumar, G. Jakka, S. Rueda, J. Schiffman,
and T. Jaeger. Integrity walls: Finding attack surfaces
from mandatory access control policies. In Proceedings
of the 7th ACM Symposium on Information,
Computer, and Communications Security (ASIACCS
2012), May 2012.

[61] H. Vijayakumar, J. Schiffman, and T. Jaeger. Process
firewalls: protecting processes during resource access.
In Proceedings of the 8th ACM European Conference
on Computer Systems, pages 57–70. ACM, 2013.

[62] D. S. Wallach, A. W. Appel, and E. W. Felten.
Safkasi: A security mechanism for language-based
systems. ACM Trans. Softw. Eng. Methodol.,
9(4):341–378, Oct. 2000.

[63] R. Watson, J. Anderson, and B. Laurie. Capsicum:
practical capabilities for UNIX. In Proceedings of the
19th USENIX Security Symposium, 2010.

[64] R. N. M. Watson. TrustedBSD: Adding trusted
operating system features to FreeBSD. In Proceedings
of the FREENIX Track: 2001 USENIX Annual
Technical Conference, pages 15–28, 2001.

[65] J. Wei et al. A methodical defense against TOCTTOU
attacks: the EDGI approach. In IEEE International
Symp. on Secure Software Engineering (ISSSE) , 2006.

[66] C. Weissman. Security controls in the adept-50
time-sharing system. In Proceedings of the November
18-20, 1969, Fall Joint Computer Conference, AFIPS
’69 (Fall), pages 119–133, New York, NY, USA, 1969.
ACM.

[67] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux Security Modules: General
security support for the Linux kernel. In Proceedings
of the 11th USENIX Security Symposium, pages
17–31, August 2002.

[68] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing system-wide information flow
for malware detection and analysis. In Proceedings of
the 14th ACM Conference on Computer and
Communications Security, CCS ’07, pages 116–127,
New York, NY, USA, 2007. ACM.

[69] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation
(OSDI), November 2006.

