
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Building a Trustworthy Execution Environment to
Defeat Exploits from both Cyber Space and

Physical Space for ARM
Le Guan, Chen Cao, Peng Liu, Member, IEEE, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng

Yu, Member, IEEE, and Trent Jaeger, Member, IEEE

Abstract—The rapid evolution of Internet-of-Things (IoT) technologies has led to an emerging need to make them smarter. However,
the smartness comes at the cost of multi-vector security exploits. From cyber space, a compromised operating system could access all
the data in a cloud-aware IoT device. From physical space, cold-boot attacks and DMA attacks impose a great threat to the unattended
devices.
In this paper, we propose TrustShadow that provides a comprehensively protected execution environment for unmodified application
running on ARM-based IoT devices. To defeat cyber attacks, TrustShadow takes advantage of ARM TrustZone technology and
partitions resources into the secure and normal worlds. In the secure world, TrustShadow constructs a trusted execution environment
for security-critical applications. This trusted environment is maintained by a lightweight runtime system. The runtime system does not
provide system services itself. Rather, it forwards them to the untrusted normal-world OS, and verifies the returns. The runtime system
further employs a page based encryption mechanism to ensure that all the data segments of a security-critical application appear in
ciphertext in DRAM chip. When an encrypted data page is accessed, it is transparently decrypted to a page in the internal RAM, which
is immune to physical exploits.

Index Terms—Malicious Operating Systems, ARM TrustZone, TEE, IoT, Physical Attack, Cold-boot Attack

F

1 INTRODUCTION

THE emerging Internet of Things (IoT) technologies have
enabled more and more isolated “things” to collect, pro-

cess, analyze, and exchange data. One trend in IoT evolution
is that these connected devices are becoming smarter and
smarter. To quickly prototype their feature-rich products,
manufacturers seek ways to run product-ready applications
without re-engineering efforts. As a result, they tend to
build their products atop ARM-based multi-programming
platforms, in which multiple programs run simultaneously
on commodity Operating Systems (OSes) such as Linux.
For example, smart gateways, embedded servers, and even
automotive in-vehicle infotainment etc. are now empowered
with more computation capability to run Linux. Except
for performing their designed intrinsic functions, a lot of
unnecessary functions that come with Linux are added to
the code base of these systems.

• L. Guan, C. Cao, P. Liu, X. Xing, and T. Jaeger are with The Pennsylvania
State University, State College, PA 16801, USA.
E-mail: {lug14, cuc96, pliu, xxing}@ist.psu.edu, tjaeger@cse.psu.edu

• X. Ge is with Microsoft Research, Redmond, WA 98052, USA.
E-mail: xing@microsoft.com

• S. Zhang is with Florida Institute of Technology, Melbourne, FL 32901,
USA. E-mail: zhangs@cs.fit.edu

• M. Yu is with The University of Texas at San Antonio, San Antonio, TX
78249, USA. E-mail: meng.yu@utsa.edu

This manuscript is an extension of the conference version appearing in the
Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’17) [1]. This manuscript presents a more
detailed description of the system design, and augments the system to enable
more comprehensive protection to trusted applications even in the presence of
physical intrusions to the devices.
Manuscript received July 28, 2017; revised June 20, 2018.

Another distinct observation found in IoT system is that
some devices are developed for remote sensing, monitoring
or control, and thus left unattended. These devices include,
but not limited to many sensors, road-side units, and credit
card readers that appear in forest, street, and other non-
trusted environments.

The aforementioned observations, i.e., full-blown soft-
ware stack design and physically vulnerable placement,
unfortunately, lead to exploits of the devices. First, it is com-
monly recognized that the security provided by commodity
OSes is often inadequate [2]. Once an OS is compromised,
attackers gain complete access to all the data on a system
even if the applications are free of bugs. Second, physi-
cally exposing devices to attackers facilitates device capture
attacks, in which attackers unseal the device body and
manipulate hardware components to steal cryptographic
keys or Intellectual Property (IP) [3], [4], [5], [6]. Since these
devices may often deal with sensitive data, possibly subject
to laws and regulations, this is particularly disconcerting.

To address these problems, a straightforward solution
is to build a protected execution environment that is iso-
lated from the OS (to defeat cyber-space exploits) and to
encrypt sensitive data (to defeat physical-space exploits). To
isolate from the OS, prior efforts on this explore executing
applications that handle sensitive data in separate virtual
machines (e.g., [2], [7], [8]), taking advantage of hardware
features (e.g., [9], [10], [11]) or retrofitting commodity OSes
(e.g. [12]). Unfortunately, none of them are applicable to the
aforementioned IoT multi-programming platforms. First,
these devices do not have the hardware features typically
available on PCs. To be energy efficient, these devices

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

generally incorporate ARM Cortex-A processors, making
the techniques that rely on unique hardware completely
futile (e.g., Haven [9] based on Intel SGX). Second, these
devices do not have abundant computational resources in
comparison with PCs or a data center in the cloud. Thus, it
is not realistic to adopt to these devices those techniques that
rely on more computing power (e.g., VirtualGoast [12]. Last
but not least, some techniques previously proposed require
radical changes to applications and OSes, which poses a
substantial barrier to their adoption. This is especially true
in the scenario where device manufacturers would like to
retain compatibility with existing applications.

To encrypt memory, existing solutions either depend on
hardware features [13], [14] or require modification to the
OS kernel [15], [16], [17]. In the latter case, it is not realistic
to assume a trusted kernel, especially considering the large
attack surface of the bloated OSes. Therefore, we believe
that a really working memory encryption solution should
not depend on the trustworthiness of the already insecure
OS.

In this paper, we propose TrustShadow, a system
specifically designed for ARM-based IoT devices that
shields legacy applications from both a compromised OS
and physical attacks. First, by taking advantage of ARM
TrustZone technology [18], our system constructs a trusted
execution environment for security-critical applications.
Different from some existing techniques, TrustShadow
does not radically change existing OSes. Rather, it utilizes
a lightweight runtime system to coordinate communica-
tions between applications and untrusted OSes. As such,
TrustShadow requires no changes to existing applications
either. Second, we incorporate the memory encryption into
the trusted runtime system. Memory encryption and de-
cryption are conducted solely by the runtime system, and
the normal OS cannot access the ciphertext memory con-
tents. As such, an attacker cannot bypass memory encryp-
tion even if he compromises the OS. This design is in
line with commercial hardware-based memory encryption
solutions such as Intel Software Guard eXtension (SGX) [13]
and AMD SME [14]. That is, memory encryption does not
rely on the OS.

More specifically, we develop TrustShadow with a run-
time system running in the TrustZone of an ARM processor.
The runtime manages the page tables for applications locally
in an isolated secure environment, and ensures their virtual
memory cannot be accessed by an untrusted OS outside the
environment. To accommodate the execution of applications
in a lightweight manner, the runtime does not incorporate
complicated system services. Rather, it forwards application
requests for system services to the untrusted OS, similar to
Proxos [8]. To guarantee security, the runtime verifies return
values of system services to defeat Iago attacks [19], and
interposes context switches between the applications and
the untrusted OS.

TrustShadow further takes advantage of the page table
management mechanism in the runtime system to provide
memory encryption service for memory regions containing
secret data. In this way, a local intruder cannot directly
read out the clear-text contents in the DRAM chip using
physical attacks such as cold boot attacks [3], [4]. Deeply
integrated with the runtime system, our memory encryption

technique distinguishes itself from others in that it does not
rely on a trustworthy OS. When an encrypted page is ac-
cessed, TrustShadow transparently decrypts it into a SoC
component – internal RAM (iRAM), which is immune to
physical attacks.

With the design above, TrustShadow protects legacy
applications from the untrusted OSes running them. As a
result, developers no longer need to re-engineer applications
in order to run them on IoT devices. Since TrustShadow
does not implement system services itself, the complex-
ity of Trusted Computing Base (TCB) is reduced, making
TrustShadow less vulnerable to exploits. The memory
encryption function can be enabled or not, depending on the
device working environment. For example, in server rooms
with physical safeguard, it is not necessary to enable this
function. On the contrary, in public areas without monitor-
ing, such as street, memory encryption can be invaluable for
defending local intrusions. To the best of our knowledge,
TrustShadow is the first solution on ARM-based IoT de-
vices that allows an unmodified application to run protected
from attacks from untrusted OSes, and works on encrypted
memory to defeat local intrusions.

In summary, this paper makes the following contribu-
tions.

• We propose a system – TrustShadow– for ARM-based
multi-programming platforms. It can protect security-
critical applications from untrusted OSes without the
requirement of re-engineering the applications.

• We introduce a runtime system within TrustShadow.
It accommodates the execution of Linux applications
with a lightweight forwarding-and-verifying mecha-
nism.

• We design a memory encryption mechanism to protect
application data from physical attacks. The memory
encryption mechanism does not assume a trustworthy
OS kernel.

• We implemented TrustShadow on a real chip (SoC)
board with the ARM TrustZone support with only
about 5.6K lines of code (LOC) in the secure world, and
320 LOC in the normal world. Using microbenchmarks
and real-world softwares, we show that TrustShadow
imposes only negligible performance overhead when
the memory encryption feature is disabled. When run-
ning with full protection, we show that TrustShadow
incurs acceptable overhead for real-world applications.

2 RELATED WORK

As is described in Section 1, prior research on shielding
trusted applications from an untrusted OS primarily focuses
on taking advantage of virtual machines, hardware features
and radical code re-engineering. In this section, we summa-
rize these works and explain why they are not suitable for
IoT devices with more details. Then we introduce relevant
memory encryption techniques to defeat physical exploits.

2.1 Shielded Execution

Hypervisors and Virtual Machines. To protect an applica-
tion from a compromised OS, one research effort focuses

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

on utilizing hypervisor to construct trusted execution en-
vironment for applications. Systems following this design
principle include Overshadow [2], CHAOS [20], SP3 [21],
Inktag [7], etc. They encrypt address space for an ap-
plication under protection through a hypervisor, so that a
compromised OS can only view the address space of the
application in ciphertext. Using the hypervisor, they also
verify the integrity of memory contents, and thus ensure a
compromised OS cannot jeopardize the execution of the ap-
plication. Similar to these techniques, another research effort
focuses on escalating protection with virtual machines. For
example, Terra [22] and Proxos [8] allocate a dedicated
VM for an application, making it resistant to a malicious
OS.

While these systems have been shown to be effective
in shielding applications, they are an overkill for resource-
constrained IoT devices, and sometimes cannot be adopted
by IoT devices. First, deploying a hypervisor-based system
is relatively computation intensive, which cannot provide
IoT devices with the best (native) performance [23]. Second,
hardware virtualization extension is a new hardware feature
in the ARM platform, but lacks support from many existing
ARM devices1. In fact, even though ARM has recently
released its new line of processors – specifically designed
for smart embedded devices – the new architecture does
incorporate virtualization extension [25]. This confirms our
speculation that virtualization is not suitable for resource-
constrained embedded devices.

From the security perspective, hypervisor or virtual ma-
chine based solutions relies on hypervisor, which is already
struggling with its own security problems due to increasing
TCB size [26], [27]. In this work, TrustShadow harnesses
TrustZone technology to mediate communication between
OS and applications, which eliminates complex, error-prone
resource allocation in a hypervisor. More importantly, the
new ARM architecture for IoT [25] has TrustZone support,
which makes our solution broadly applicable for future
hardware.

Hardware Features. Research in the past also explores us-
ing various hardware features to protect applications from
untrusted OSes. For example, Haven [9] takes advantage of
Intel SGX [13] to safeguard applications. More specifically, it
harnesses SGX to instantiate a secure region called enclave,
and then protects the execution of applications within the
enclave from malicious privilege code. In addition to Intel
SGX, Trusted Platform Module (TPM) is also used for shield-
ing self-contained applications from a potentially malicious
OS. For example, both Flicker [10] and TrustVisor [11]
utilize TPM to isolate the execution of sensitive code. As
is described in Section 1, IoT devices generally incorporate
ARM processors which do not have the aforementioned
hardware features. As a result, previous techniques based
on those cannot be applicable.

Trusted Language Runtime (TLR) [28], CaSE [29], and
TrustOTP [30] utilize ARM TrustZone technology for
shielding applications. TLR implements a small runtime
capable of interpreting .NET managed code inside the se-
cure world. By splitting mobile application into secure part
and non-secure part, the secure part of the app is never

1. ARM released virtualization extension in the year 2010 [24].

exposed to the untrusted OSes. CaSE [29] creates a trusted
environment with TrustZone for self-contained applications.
TrustOTP harnesses TrustZone to protect the confidential-
ity of the One-Time-Password against a malicious mobile
OS. While these works take advantage of TrustZone as
an isolation mechanism, they require radical modifications
to applications. This poses a substantial barrier to their
adoptions.

Code Instrumentation. Virtual Ghost [12] is another
research endeavor on protecting applications from a hostile
OS. Different from those techniques discussed above, it uses
compiler techniques and run-time checking to implement a
mechanism similar to OverShadow. Since the compiler in-
strumentation and run-time checking introduce more priv-
ilege code to kernel, not only does it increase TCB of a
computer system but also imposes performance overhead,
making it not suitable to energy-efficient, computation-
lightweight IoT devices.

2.2 Memory Encryption

By encrypting the memory in a computing system, an at-
tacker who obtains an image of the system memory cannot
extract any valuable information. Memory encryption can
be performed either by software or hardware. In the latter
case, the OS is oblivious of the underlying cryptographic
calculations.

Software-based Approaches. Cryptkeeper [15] extends the
traditional memory model by dividing the DRAM into two
parts, a larger part holding encrypted data, and a smaller
part holding a clear-text working set, which acts as a cache
system for the encrypted part. RamCrypt [16] works on
individual process. It attempts to encrypt the whole data
segments of a protected process. In HyperCrypt [31], hyper-
visor is used to encrypt both the kernel and user space of a
guest VM. In all these solutions, to execute the program, a
small working set must be kept in clear-text, rendering data
in this region insecure.

The following works address the problem of clear-text
working set. Bear [32] hides the working set in the on-
chip memory of ARM-based device. However, it focuses
on a “from scratch” micro-kernel other than a commodity
OS. Sentry [17] encrypts an Android application when the
device is locked. To execute applications in background, it
also employs on-chip caches.

All the existing solutions are based on the assumption
that the OS kernel is trusted. However, this seldom holds be-
cause of the big TCB of commodity OSes. In TrustShadow,
we enforce memory encryption using a lightweight runtime
system that is isolated from the OS. With a substantially
reduced TCB, TrustShadow affords a more secure and
comprehensive memory encryption solution.

Hardware-based Approaches. By modifying the computer
system architecture, it is possible to encrypt the DRAM chip
solely by hardware. Execute-Only Memory (XOM) [33] is
one of the first hardware-based efforts that uses full memory
encryption to defeat against software piracy. The traditional
fetch-decode-execute flow in the processor design is inserted
with a decryption step. Researchers also proposed placing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

a specialized cryptography hardware between the proces-
sor and DRAM to encrypt and decrypt memory transac-
tions [34], [35]. Although these solutions are efficient, they
rely on hardware modifications. With increased cost, they
are not feasible for incremental Commercial Off-The-Shelf
(COTS) defense deployment.

As mentioned earlier, Intel processors with SGX exten-
sion [13] could isolate a security-critical application from an
untrusted OS by placing it inside an enclave. The design
of SGX also excludes DRAM out of its TCB. To achieve
this, the DRAM page frames corresponding to an enclave
are encrypted by hardware, and is only decrypted within
the processor. In this work, we show that many SGX fea-
tures, including memory encryption, can be supported with
TrustShadow on ARM devices in a programmable and
flexible way. We present a detailed comparison between
TrustShadow and SGX in Section 9.5.

3 PRELIMINARY

In this section, we present the background of ARM Trust-
Zone technology, physical-space threats to IoT devices, and
on-chip RAM available in ARM devices.

3.1 ARM TrustZone
We briefly describe the architecture of ARM TrustZone, and
two key components, address space controller and memory
management unit (MMU).

Architecture. ARM TrustZone partitions all of the System-
on-Chip (SoC) hardware and software resources in one of
two worlds - the secure world for the security subsys-
tem, and the normal world for everything else. With this
partition, a single physical processor core can safely and
efficiently execute code from both the normal world and the
secure world in a time-sliced fashion. When the processor
executes code in the normal world, it enters a non-secure
state in which the processor can only access resources in the
normal world. Otherwise, it is in a secure state in which the
processor can access resources resided in both worlds.

To determine whether program execution is in the secure
or normal world, ARM TrustZone extends a Non-Secure bit
(NS-bit) on the AMBA Advanced eXtensble Interface (AXI)
bus. With this NS-bit, the processor can check permissions
on the access. To manage switches to and from the secure
world, TrustZone provides monitor mode software which en-
sures the state of the world that the processor is leaving
is safely saved, and the state of the world the processor is
switching to is correctly restored. The secure world entry to
the monitor mode can be achieved by an explicit call via an
smc instruction.

Address Space Controller. TrustZone Address Space Con-
troller (TZASC) is an Advanced Microcontroller Bus Ar-
chitecture (AMBA) compliant SoC peripheral. It allows a
TrustZone system to configure security access permissions
for each address region. In TrustZone, the access permis-
sions are managed by a group of registers, the access to
which must be from the secure world. In addition, TZASC
controls data transfer between an ARM processor and Dy-
namic Memory Controller (DMC). To permit data transfer,
it examines whether NS-bit matches the security settings of

the memory region. Given a memory region set to secure
access only, for example, an attempt to read returns all zeros
and that to write has no change to the contents in that
region.

Memory Management Unit. An ARM processor also pro-
vides MMU to perform the translation of virtual memory
addresses to physical addresses. Since TrustZone partitions
memory space into secure and normal worlds, a processor
with TrustZone enabled provides two separated virtual
MMUs which allow each world to map virtual addresses
to physical addresses independently.

In the normal world, a process can only access physical
memory in the non-secure state. In the secure world, it how-
ever can specify how to access physical memory by tuning
NS-bit. For example, it could adjust the NS field in the first-
level page table, and access the memory in either the secure
or non-secure state. This flexibility augments a TrustZone
system with an ability to efficiently share memory across
the worlds.

3.2 Physical Memory Attacks
One of the easiest yet destructive physical attack targeting
DRAM is cold boot attack [3], [4]. In a cold boot attack, an
attacker quickly reboots the victim device and launches a
malicious memory-dumping kernel that copies the contents
of the system memory into the device permanent storage.
The success of this attack relies on the remanence effect
of the DRAM chips, which states that the DRAM memory
content fades away slowly than expected (especially at low
temperatures), leaving a large portion of residual contents
even after reboot [3].

There are other physical attacks. In a bus monitoring
attack, an attacker may attach a bus monitoring tool [36] to
the memory bus to intercept the memory transactions. Bus
monitoring also facilitates side channel attacks. For example,
an attacker can deduce the cryptographic keys by merely
observing memory access patterns [37]. In DMA (Direct
Memory Access) attacks, an attacker can also utilize the
debugging port of an UART controller [17] to issue DMA
read requests to the device, bypassing security checks per-
formed by the processor. This is because the DMA engine is
independent of the processor, and can directly communicate
with the DRAM chip.

3.3 On-chip RAM
Different from DRAM, SoC components are integrated
into the chip. Therefore, they can exhibit better resilience
to physical exploits. Utilizing cache [17], [29] or internal
RAM [17], [32], many defense systems have been proposed.

CPU cache is a small amount of static RAM that sits in-
between the processor and the DRAM. It has a much lower
access latency than DRAM. Therefore it is widely deployed
in computing systems to bridge the performance gap be-
tween the processor and the DRAM. When a processor loses
power, all the cache contents become invalid. As a result,
cache is inherently immune to cold boot attacks. Since cache
data never appear on the memory bus, and DMA transfers
data directly from DRAM without passing through cache,
cache is also immune to bus monitoring and DMA attacks.
a destructive physical attack targeting DRAM chip [3], [4].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

On-chip RAM (OCRAM), also known as internal RAM
(iRAM), is a small amount of static RAM tightly coupled
with the SoC. Typically, it is used by the SoC’s proprietary
firmware to initialize the chip before DRAM can be used.
IRAM has two features. First, it is encapsulated into the
SoC package. Therefore, it is extremely difficult to disas-
semble the chip and expose the iRAM by physical attacks,
such as bus-monitoring [36]. Second, whenever the device
is rebooted, the device’s firmware erases the iRAM [17].
This makes iRAM an ideal haven for storing temporary
secret data to thwart cold boot attacks. With the secret data
sheltered in iRAM, the malicious memory-dumping kernel
could only obtain erased IRAM contents.

To exploit cache for data storage, existing solutions lock
a portion of the cache to prevent the data from being evicted
into the DRAM [17], [29]. However, cache lockdown is
an obsoleted feature, as indicated in the official technical
reference manual of ARM’s latest processors (Chapter 6.1
and 7.1 in [38]). Moreover, monopolizing portions of cache
impacts the overall system performance. We consider it sub-
optimal to exploit cache for data storage, and instead choose
iRAM to defeat physical attacks in TrustShadow.

4 THREAT MODEL

TrustShadow shields a trustworthy application from both
a hostile OS and a local intruder. We consider a completely
compromised OS, which means the attacker can execute
arbitrary hostile code with system privilege to interfere
with the memory and registers of a process. For example,
it may read/write any memory in victim process’s address
space, through either load/store instructions or Direct Mem-
ory Access [5], [6], causing memory disclosure and code
injection attacks. As another example, OS could modify
interrupted process state (e.g., the PC register) during excep-
tion handling and resume the execution from an arbitrary
instruction to change the program execution’s control flow.
In addition, a hostile OS could change victim process’s
behavior by hijacking system services (e.g., forging system
call responses), leading to Iago attacks [19].

Regarding a local intruder, we consider an attacker capa-
ble of dumping a memory image of the entire DRAM chip.
In practice, this can be achieved by cold boot attacks [3], [4],
bus monitoring [36], and DMA attacks [5], [6].

Availability is out of scope in this paper. In fact, a
compromised OS could simply refuse to boot, or decline the
time slices assigned to a trusted process to launch Denial-of-
Service (DoS) attacks. We design our system with side chan-
nel attacks in mind. For example, we adopt hardware-based
encryption mechanism to minimize the impact of side chan-
nel analysis. We also patch our system with kernel page ta-
ble isolation technique to defeat Meltdown attack [39]. How-
ever, if the application developer adopts insecure software
implementation subject to side channel attacks (e.g., sbox-
based AES implementation), TrustShadow cannot prevent
potential data leakage. Sophisticated side channel analysis
through timing [40], energy consumption [41] and electro-
magnetic signal [42] are out of scope in this paper. We
assume the runtime system running in the TrustZone is
trusted. Throughout our design of TrustShadow, we keep
its functionality simple and its code base minimal. This

Linux Kernel

Normal WorldSecure World

Hardware

Runtime System

Exception Dispatcher

R
N

G

Monitor Mode
Software

Trusted Untrusted Marshaling
Buffer

FLASHSecure RAM

Context Switch

P
age F

ault H
andler

ret_to_user

entry-common.S

ret_to_user

O
ther O

S
 S

ervices

S
yscall S

ervices

Zombie
HAP

Internal Exception Handler External Exception Handler

Forwarder

F
orw

ading E
xceptions

Shadow
HAP

U
ser M

ode
P

rivileged M
ode

Normal RAMCPU

F
V

P

P
age

F
ault

E
nc

S
yscall

F
ile I/O

,
Interrupt

iRAM

Fig. 1. The architecture of TrustShadow.

makes it easier to ensure its correctness through formal
verification [43], [44] or manual review.

5 OVERVIEW

Figure 1 illustrates the architecture of TrustShadow, where
the runtime system and Linux kernel run in the secure and
normal world respectively. Within the secure world, the
runtime system shields the execution of a High-Assurance
Process (HAP), and all the trusted modules shown in the
figure cannot be accessed by the ordinary Linux running in
the normal world.

To be resistant to a hostile OS, a HAP needs to be
initialized through a customized system call, which creates
a “zombie” HAP and its “shadow” counterpart. In our
design, the zombie HAP represents the application running
in the normal world. However, it never gets scheduled to
run. Rather, TrustShadow runs its “shadow” counterpart
residing in the secure world. To support the execution of
the shadow HAP, TrustShadow introduces a lightweight
runtime system to the secure world.

The runtime system does not provide system services
for shadow HAPs. Instead, it intercepts exceptions and for-
wards them to the Linux OS running in the normal world.
In this way, the runtime system can maintain a trusted ex-
ecution environment for HAPs without introducing a large
amount of code to the secure world. To enable cross-world
communications, TrustShadow introduces data structure
task_shared to share data between the runtime system
and the OS. In addition, TrustShadow sets aside data struc-
ture task_private to store sensitive metadata for shadow
HAPs. It can only be accessed by the runtime system.

To accommodate the execution of HAPs and coordinate
communications across two worlds, the runtime system
is designed with various modules (see Figure 1). Serving
as the gateway for all exceptions and their returns, the
context switch module maintains the CPU hardware context
for each HAP, and restores/clears general-purpose registers
accordingly. It allows the runtime system to coordinate the
execution of a HAP and avoid leaking sensitive data to the
OS running in the normal world.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

The runtime system also implements an internal ex-
ception handler module – indicated by FVP and RNG in
Figure 1. They are designed to handle floating point compu-
tation and random number requests locally, for the reasons
that cryptographic operation must rely upon trustworthy
random number generation, and floating point computation
necessarily exposes floating registers if TrustShadow relies
upon the Linux OS for handling it. In Section 6.5, we
describe this internal exception handler in detail.

In our design, the runtime system handles exceptions us-
ing three modules, including exception dispatcher, external
exception handler, and forwarder. The exception dispatcher
is responsible for dispatching exceptions to corresponding
handlers. Except for floating point exception and random
number requests, this module dispatches all the exceptions
to the external exception handler which further redirects the
exceptions to the forwarder module. To accommodate ex-
ception forwarding in a transparent manner, the forwarder
module emulates an exception context for the normal world,
pretending that exception is trigger by the zombie HAP.
After receiving exceptions, the Linux OS handles them and
returns results through task_shared. The external excep-
tion handler verifies the return results before reflecting them
to the execution environment of the corresponding HAP. In
Section 6.2, 6.3 and 6.4, we describe how the three modules
coordinate and perform external exception handling.

The most important data structure for a process’s exe-
cution environment is page tables. TrustShadow differen-
tiates a public page (e.g., a code page) and a private page
(e.g., an anonymous data page). In Section 6.3.1, we give a
clear definition of public and private pages for use in this
paper. With the page fault handler module, the runtime
system loads a public page into a secure DRAM frame
for isolation with the OS. For private pages, they appear
as ciphertext in the normal DRAM. When such a page is
accessed, TrustShadow transparently decrypts it into a
secure iRAM page. In this way, we ensure that the entire
address space of a HAP is isolated from the OS, and the
private pages never appear in cleartext in the DRAM.

Since the normal OS does not have the privilege to access
a shadow HAP, TrustShadow also introduces a world-
shared buffer, indicated as the marshaling buffer in Figure 1.
Through this buffer, not only does TrustShadow share the
parameters of system calls with the ordinary OS but also
retrieves the returns of the system calls. To retrieve the
return value of a system call, TrustShadow copies the data
in the buffer to the memory region corresponding to the
system call, provided that the verifier module marks it valid.

6 RUNTIME SYSTEM

In this section, we detail the runtime system illustrated in
Figure 1. We begin with memory management for security.
Then, we discuss how the aforementioned modules coordi-
nate HAP execution.

6.1 Memory Management
Here, we describe how we partition physical memory re-
gions, and specify the design of virtual memory system.

Physical Memory Partition. Using TZASC, TrustShadow
creates four distinct physical memory regions. They are

Physical Memory

Secure World Virtual Memory

Fixed m
apping

0G

Normal World Virtual Memory

K
ernel S

pace
U

ser S
pace

0G

2G

4G

Fi
xe

d
m

ap
pi

ng

ZONE_TZ_RT

ZONE_NORMAL

ZONE_TZ_APP

......

vmalloc

lowmem

User Space
(maps to

ZONE_NORMAL)

S: User Space
(maps to

ZONE_TZ_APP and
ZONE_TZ_IRAM)

S: Runtime System

N: Linux OS

......

K
ernel S

pace
U

ser S
pace

2G

4G

ZONE_TZ_IRAM

Fig. 2. Physical memory partition vs. virtual memory layout.

non-secure region ZONE_TZ_NORMAL as well as secure re-
gions ZONE_TZ_RT, ZONE_TZ_APP, and ZONE_TZ_IRAM.
The non-secure region can be accessed by both the normal
and secure worlds, whereas the secure regions have to be
accessed through the secure world. In our design, we des-
ignate secure regions ZONE_TZ_APP and ZONE_TZ_IRAM
for HAPs, ZONE_TZ_RT for the runtime system, and non-
secure region ZONE_NORMAL for the Linux OS, the en-
crypted data pages of HAPs and other ordinary processes.
In our prototype, the whole ZONE_NORMAL can be mapped
to lowmem of the Linux kernel virtual address space. Note
that ZONE_TZ_IRAM is a special secure region that is backed
by the iRAM. TrustShadow uses it to store the working set
of a HAP that contains private data. We illustrate these four
regions in Figure 2.

With the partition above, the runtime system, HAPs and
Linux OS are all physically isolated, which provides the
essential support for safeguarding the HAPs.

Virtual Memory Layout. TrustShadow supports executing
legacy Linux code in the secure world. As a result, we design
the virtual address of the secure world to follow the same
user/kernel memory split as that in the Linux OS. With this
design, legacy code can be offloaded to execute in the secure
world without any code relocation. In our current design,
both Linux OS and the runtime system maintain a 2G/2G
virtual address split, as shown in Figure 2.

In the secure world, in addition to mapping itself to
ZONE_TZ_RT, the runtime system maps the physical mem-
ory holding the Linux OS (ZONE_NORMAL) in the virtual
address space. With this mapping, the runtime system
can efficiently locate shared data from the OS (such as
task_shared) by adding a corresponding offset.

6.2 Forwarding Exceptions

In general, a program is not self-contained. During execu-
tion, it might be trapped into the OS (e.g., calling a system
service, encountering a page fault or interrupt). In the ARM
architecture, system calls are requested by issuing the svc
instruction which traps the processor into the privileged
SVC mode to accomplish the system services. Likewise,
other exceptions during execution would trap the processor
into the corresponding privileged modes.

As is described in Section 5, except for float point
computation and random number generation, the runtime
system intercepts exceptions and redirects them to the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Linux running in the normal world. Here, we describe how
TrustShadow performs exception forwarding.

ARM processors utilize current program status register
(cpsr) to hold the current working mode of a processor
(e.g., USR or SVC). When an exception is taken, a processor
enters the target mode by performing the following oper-
ations. First, register pc points to the corresponding offset
in the exception vector table. Then, the processor stores the
value of previous cpsr to saved program status register
(spsr) before setting cpsr to indicate the current working
mode (i.e., the target mode). In the ARM architecture, spsr
is a banked register and thus each processor mode has its
own copy. Based on the value of spsr, an exception handler
could get information about the pre-exception processor
mode.

Since the monitor mode software can access resources
in both worlds, the runtime system re-produces an exception
as follows. Here, we take forwarding an SVC exception as
an example. (i) The runtime system sets spsr in monitor
mode to represent the target mode (SVC). (ii) It sets the
target mode’s spsr to represent user mode (USR). (iii) It
issues movs instruction to jump to the target exception
handler (0xFFFF0008). Here, movs is an exception return
instruction. In addition to jumping to the target address, it
copies spsr in the current mode (SVC, which is set in Step i)
to cpsr in the target mode. As a result, the OS kernel catches
the exception at the correct address (0xFFFF0008) in the
right mode (SVC), with spsr indicating that the exception
comes from user mode (set in Step ii). We provide a code
snippet to demonstrate this implementation in Appendix A.
Forwarding other types of exception can be implemented in
a similar way.

6.3 Handling Page Fault

A page fault is one type of exception resulting from the
failure of fetching an instruction or accessing data. In the
ARM architecture, a page fault is also called an abort excep-
tion, raised by MMU, indicating that the memory accessed
does not have a page table entry set properly. After such
an exception is taken, an OS invokes its page fault handler
which assigns an appropriate physical page and updates the
page table entry accordingly. Typically, a page table entry
includes the virtual-to-physical address mapping and the
access permissions of the virtual memory.

In general, an OS maintains page tables for applications.
However, considering that an OS might be hostile and can
tamper with the page tables for applications, we isolate
these page tables from the OS by placing them in the secure
world. The runtime system updates their entries by taking
advantage of the page fault handler provided by Linux OS.

Specifically, we modify the existing on-demand page
fault handing mechanism in Linux. In particular, we hook
the page fault handler so that it can store the context of
page fault handling in the aforementioned shared memory
task_shared2. After retrieving the updating information
and before installing a page table entry, the runtime system

2. In our design, task_shared carries the updated page table entry
value (which contains the address of the translated physical memory
page), the influenced virtual address, and additional contextual infor-
mation.

HAP Virtual Memory

Initialized Data (before
COW)

Stack

Kernel

Heap

Code

Memory Mapped

Initialized Data (after
COW)

Physical Memory

ZONE_TZ_RT

ZONE_NORMAL

ZONE_TZ_APP

ZONE_TZ_IRAM
Working Set

Non-working Set

Fig. 3. Virtual address space of a HAP and its mapping to physical
memory. Dotted line stands for a “logic” mapping to an encrypted page.
Access to it triggers the page fault handler to decrypt it to a free page
in ZONE_TZ_IRAM.

validates the returned information. In the following, we
present the overall design goals of the page fault handling,
followed by more details on several case studies.

6.3.1 Overall Design Goals
In Figure 3, we show the address space of a HAP and its
mapping to the physical memory. An executable file, which
is commonly assumed to be publicly available, contains the
code region and initialized data region (such as global and
static variables). When a process updates a variable, a Copy-
On-Write (COW) happens, and the corresponding data page
is duplicated and becomes private. Therefore, we consider
code regions and initialized data regions before COW as
public regions (shown in green in Figure 3), and consider
others, including the anonymous memory segments (such
as bss, heap, stack, and anonymously mapped memory
segments) and initialized data regions after COW as private
regions (shown in orange in Figure 3).

Guided by the information retrieved from the OS, the
runtime system maintains the page table for a HAP such
that the entire address space of a HAP is isolated from a
hostile OS, and the private regions never appear in cleartext
in the DRAM chip. In particular, The public regions are
mapped to ZONE_TZ_APP, and TrustShadow ensures the
integrity of each page by checking the pre-calculated hash
value when it is loaded. In this way, a public page is loaded
correctly, and cannot be touched by the OS during run-time.
We do not protect the confidentiality of a public page from
physical attacks.

The private regions, however, contains user-generated
data, thus must be protected from physical exploits. We
protect them cryptographically. When a private page is
not active, it is mapped to an encrypted page frame in
ZONE_NORMAL. When it is accessed, a page fault occurs,
and the encrypted page is decrypted transparently to a
page residing in ZONE_TZ_IRAM. To keep the integrity and
freshness of a page, the runtime system maintains a Message
Authentication Code (MAC), calculated with the encrypted
page contents and an incremental generation number, for
each inactive private page. We follow an encrypt-then-MAC
design to avoid wasted CPU cycles in case of page manip-
ulations. To avoid frequent swapping between a cipher-text

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Load-time Integrity Run-time Isolation from OS Physical Attack ImmunityConfidentiality Integrity Freshness

Private Regions Initialized Data after COW Hash Checking Encryption MAC Incremental
Generation Number Encryption in DRAMAnonymous Memory (stack/heap, etc.) N/A (all zero)

Public Regions (code, initialized data before COW) Hash Checking Access Control using TrustZone N/A (publicly available)

TABLE 1
SECURITY MECHANISMS ENFORCED ON DIFFERENT MEMORY REGIONS

DRAM page and a clear-text iRAM page, we also maintain
a sliding window for the recently accessed private pages
in ZONE_TZ_IRAM. When a memory access occurs in the
sliding window, it is fulfilled directly. Otherwise, the oldest
page in the sliding window is committed (i.e., encrypted
back to the corresponding DRAM page), and the actual data
is decrypted to the reclaimed iRAM page. In Table 1, we
summarize the achieved security features for both the public
regions and private regions of a HAP.

6.3.2 Page Table Update for Public Regions
A page fault may occur on different regions of the address
space, and TrustShadow handles them differently to fulfill
the design goals mentioned in Section 6.3.1. This section
describes how TrustShadow handles page faults within
public regions, which have an executable file as the backing
media. In this case, TrustShadow relies on the OS to load
the file contents to memory. As the OS may be hostile, the
runtime system verifies the integrity of loaded contents.
After being loaded in ZONE_TZ_APP, a public page can no
longer be touched by the OS.

We take loading a code page as an example in Figure 4a.
When a prefetch abort happens, the Linux page fault han-
dler will eventually call do_read_fault, which locates the
normal physical page N caching the corresponding code
page (Step 1). In this context, a new secure world page S
from ZONE_TZ_APP is allocated, and the physical addresses
of both N and S pages are saved in task_shared. With this
shared information, the runtime system first ensures that the
S page is actually a fresh page from ZONE_TZ_APP. Then,
the runtime system installs a new page table entry in the
trusted page table (Step 2), copies the N page to the S page
(Step 3) and verifies the integrity of the copied page (Step 4).
Note that verification is performed on the S page, therefore,
TrustShadow is resilient to TOCTTOU (Time Of Check To
Time Of Use) attacks.

The described page table update with integrity check
is the low level primitive for ensuring load time program
integrity. TrustShadow enforces such checking on all the
memory segments of type PT_LOAD in the ELF program
images, including executables and dynamic libraries. In the
following, we provide details on verifying the integrity of
program images.

Verifying Executable Integrity. The Runtime system main-
tains a list of hash values in the format of (vaddr, hash),
which is initialized according to the bundled manifest (see
Section 6.6). Once a page fault occurs in the covered range,
the runtime system installs a secure page table entry as
mentioned above. If validation is failed, the runtime system
immediately terminates the process by sending an _exit
system call to the OS. We note that such validation is a one-
time effort, so it does not influence execution performance
at run time after the program is warmed up.

Verifying Shared Library Integrity. Different from executa-
bles, shared libraries are position independent. To verify
pages loaded for shared libraries, the runtime system main-
tains a system wide (offset, hash) list for all shared
libraries frequently used. When a shared library image is
mapped in the address space, the runtime system obtains
the loaded base address baseAddr by monitoring the re-
turn values of the mmap system calls. Then, the integrity of
the loaded page is verified at the address (baseAddr +
offset).

6.3.3 Page Table Update for Private Regions

As mentioned earlier, private regions contains user-
generated data, and we protect them with cryptographic
mechanisms. As shown in Figure 4b, the Linux page fault
handler allocates a normal physical page N for the private
page (Step 1). Then the runtime system finds a free page
S in ZONE_TZ_IRAM from the sliding window, and installs
a new page table entry in the trusted page table (Step 2).
If the page fault is caused by COW, the runtime system
copies the N page to the S page. Otherwise, the S page is
initialized to all zeros. During execution, the clear-text S
page and the cipher-text N page may swap the contents
(Step 3). The runtime system maintains a MAC for each
page to prevent OS from manipulating the encrypted page.
Besides, the MAC algorithm also takes a generation number
as input. The generation number increases with each swap-
ping. Therefore, the runtime system is able to detect reply
attacks from the OS.

File I/O Protection. Based on the page fault handling
mechanism for private regions, TrustShadow supports
encrypted file I/O operations such that a hostile OS
only has access to the encrypted file contents. Specifically,
TrustShadow allows developers to differentiate data files
based on their the sensitivity levels. Only sensitive files that
are specified in a manifest bundled with the application (see
Section 6.6 for details) are protected.

Before elaborating the details, we first describe how
TrustShadow manages protected files at a high level. All
the operations accessing these files are transparently trans-
formed into memory mapped I/O. To correctly map file
descriptor offsets to virtual addresses, preceding pages of
a file are reserved for storing meta-data. This includes the
real file length, time stamp of the last access, along with
the MAC. These preceding meta pages are protected by a
per-application AES key that is provided by the manifest.

Encrypting a protected file is straightforward. When a
non-present page of a protected file is accessed, the runtime
system first verifies the MAC of the encrypted page N
loaded by the OS. If the verification is passed, the runtime
system decrypts the N page and writes it into a secure
page S in ZONE_TZ_IRAM. When unmapping this page,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

ZONE_TZ_RT

Physical Memory

1

3

Untrusted Page TableTrusted Page Table

0x32A32000 RX

... RX

... RX

N-page

S-page

0x40000000

0x10000000
... RX

... RX

0x403E1000 RX

1: Untrusted OS installs PT
2: Runtime system installs PT
3: Runtime system copies the
 N-page to the S-page
4: Hash validation

(vaddr, hash)
4

2

0x30000000

ZONE_TZ_IRAM

ZONE_NORMAL

ZONE_TZ_APP
0x50000000

(a) Page Table Update for Public Regions.

ZONE_TZ_RT

ZONE_TZ_APP

Physical Memory

1
Untrusted Page TableTrusted Page Table

0x303E1000 RW

... RW

... RW

N-page

0x40000000

0x30000000

... RW

... RW

0x50031000 RW

1: Untrusted OS installs PT
2: Runtime system installs PT
3: Swap between the cipher-text
N-page and the clear-text S-page

0x10000000

ZONE_TZ_IRAM

S-page
0x50000000

2 3

ZONE_NORMAL

(b) Page Table Update for Private Regions.

Fig. 4. Page Table Update (S page stands for a secure page while N page stands for a normal page).

the runtime system encrypts the updated S page into the
original N page, and recalculates and stores the MAC of
the N page. Finally, the N page is written to the permanent
storage by the OS.

6.4 Intervening System Calls
Two problems are raised when a system call is forwarded to
the OS. First, due to encryption, the OS kernel cannot access
the clear-text data of a shadow HAP, while some system
call services rely on input data from user space. Second,
the results returned by the OS are not trusted, which may
lead to potential attacks. The runtime system coordinates
the intervention between a HAP and the OS, provides the
OS with essential service request data, and verifies the
responses from an untrusted OS. For critical system services
that cannot be served by the OS (e.g., random number
generator), the runtime system implements them inside the
secure world, which is discussed in Section 6.5.

6.4.1 Adapting System Calls
Memory isolation changes the way that the OS manages
and accesses the memory of a HAP. Without the runtime
system acting as an intermediator, it is impossible for the OS
to access application data containing system call requests.
We follow existing marshaling techniques available on x86
platform, in which system call parameters are adapted
in a world-shared buffer [2]. This allows the OS to have
temporary access to system call parameters. The design of
parameter marshaling is common and straightforward. This
section instead describes some remaining challenges that
cannot be dealt with by parameter marshaling.

Signal. In signal handling, a signal delivery allows an un-
trusted OS to resume user space code at arbitrary location,
thus compromising control flow integrity of a shadow HAP.
In addition, the kernel function setup_frame needs to
manipulate the process’s stack to craft signal information
and return code, while the OS has no privilege to do so.

TrustShadow addresses these problems by both OS
instrumentation and runtime system support. Specifically,
when a signal is registered, the runtime system inserts the
handler address into the task_private structure of the
shadow HAP. When a signal is caught by the OS, a reserved
page in the marshaling buffer is used by setup_frame to

set up a separate user mode stack specifically for signal
handling. At the same time, the intended return address
for signal handler is placed in task_shared. When the
runtime system resumes, it first verifies that the address
has been registered and that the pretcode on the signal
stack is correct3. If so, the signal stack is copied to an
unused virtual address backed by a secure page4. Then the
hardware context of the normal control flow is saved in
a temporary structure in task_private, and is replaced
with the signal’s hardware context. When the signal han-
dler returns by issuing the rt_sigreturn system call, the
hardware context of the normal control flow is restored.

Futex. Fast userspace mutex (futex) is another interest-
ing kernel service that conflicts with process isolation. In
Linux, a futex is identified by a four-bytes memory shared
among processes or threads. It acts as a building block for
many higher-level locking abstractions such as semaphores,
POSIX mutexes, and barriers. If a thread fails to acquire a
lock, it passes the lock’s address along with its current value
to a futex wait operation. This futex operation will
block the thread if and only if the value in lock’s address still
matches the value it received. The blocked thread resumes
when another thread releases the lock by issuing a futex
wake operation, which unblocks all the threads waiting on
a specific lock. Obviously, the futex system call needs to
read the value of the lock which is in the user space of a
HAP.

We observe that a thread never waits for more than one
futex at a time5. Therefore, we hack the futex system call to
always read from a fixed memory location in the marshaling
buffer. Each time a futex wait operation is issued, the
runtime system synchronizes the current futex value to
that fixed address. In TrustShadow, we further handle a
futex shared across processes by maintaining a system wide
map that keeps physical addresses of involved memories.
The runtime system queries this map to synchronize futex
updates to different processes.

3. pretcode points to a piece of code calling the rt_sigreturn
system call on sigpage. This code is common to all the processes.

4. TrustShadow reserves configurable number of secure pages
specifically for this purpose.

5. A blocked thread can never issue another futex wait operation.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

6.4.2 Defeating Iago Attack
As disclosed in [19], a compromised OS could subvert a
HAP by manipulating the return values of system calls,
thus leading to Iago attacks. For example, when a HAP
requests a new memory region through the mmap system
call, it expects that the returned region is disjoint with any
existing mapping in the process’s address space. However, a
compromised OS could return an address that overlaps with
the process’s stack. Without proper checking on the return
values, the following write on the new region would smash
the stack and the process can be coerced into executing a
return-oriented program [45].

With the runtime system sitting in-between the shadow
HAP and the untrusted OS, it is straightforward to address
known Iago attacks by interposing the system call interface
and checking their results, providing we have a specification
for that particular system call. Here, we take the afore-
mentioned mmap system call as an example, which is also
the classic Iago attack proposed in the original paper [19].
The runtime system maintains a trustworthy data structure
of current virtual memory mapping for each HAP. Every
return address of the mmap or brk system system call is
compared with the current memory mapping. If an overlap
is found, the HAP is immediately killed. The runtime system
collects current memory mapping in three ways. First, the
range of stack is obtained from current sp, because the stack
spans from sp to the top of user space virtual memory.
Second, heap limit can be monitored by examining return
values of the brk system calls. Finally, the return value of
each successful mmap/munmap system call is recorded.

We note that the current TrustShadow implementation
does not address all the possible Iago attacks. There are so
many system calls in the Linux kernel (386 in the kernel ver-
sion 3.18.24 for ARM) that it is cumbersome and unrealistic
to design and implement a specification for each system call
like mmap. A clever solution was proposed by Baumann et
al. [9], which adds a library OS to each application to narrow
down the interface to be checked. In their prototype on Win-
dows with Drawbridge, the interface is reduced to 22 calls,
which makes comprehensive system call checking possible.
In Linux, there is a similar work called Graphene [46] which
exposes 43 calls. TrustShadow is completely compatible
with this design – Graphene can be easily incorporated into
our runtime system and as a result, we can check whether
all the 43 system calls conform to the specification. However,
we note that this also increases the TCB of the whole system.
Drawbridge has a code base of over a million of LOC, while
Graphene has a code base of 37,328 LOC.

6.5 Internal Exception Handling
In this section, we list security-critical exceptions that are
handled directly inside the runtime system. Forwarding
them to the OS would lead to security breaches.

Floating Point Computation. ARM architecture supports
hardware floating point calculation by Vector Floating-Point
(VFP) architecture extension. VFP introduces a set of regis-
ters and instructions specific for floating point calculations.
The access to them is controlled by a privileged register
FPEXC. In Linux, when a program accesses VFP for the
first time, an UNDEFINED exception is raised and the kernel

is responsible for enabling VFP support for this program.
To support multiple processes accessing VFP concurrently,
the kernel maintains a VFP context for each process in its
kernel stack. This design obviously leaks user data con-
tained in VFP registers to kernel. In TrustShadow, the
runtime system duplicates the code handling VFP from the
Linux OS. More specifically, the runtime system maintains
a VFP context in the secure memory for each HAP that
requires VFP calculation, and clears VFP registers whenever
switching to the ordinary OS.

Random Number Generator. The Linux pseudo-Random
Number Generator (LRNG) is the main source of ran-
domness for many cryptographic applications, such as
OpenSSL. Linux provides LRNG service by exposing
/dev/(u)random devices to applications. Since using
weak random values is a catastrophe for cryptographic
systems, and an untrusted OS should not know the key
materials used in the application, TrustShadow provides
a trusted RNG service in the secure world. Specifically, the
runtime system maintains a list of file descriptors that cor-
respond to opened /dev/(u)random devices. Read opera-
tions on these descriptors are intercepted such that trusted
random values are directly provided. The runtime system
readily utilizes the on-board hardware random number
generator RNG4 to generate strong random numbers.

6.6 Manifest Design
As mentioned in prior sections, each HAP is bundled with a
manifest that provides metadata for the security features.
We design a manifest to contain the following – a per-
application secret key, the integrity metadata of the applica-
tion (i.e., the (vaddr, hash) list), and a list of file names
that should be cryptographically protected.

Since the manifest is stored on a local persistent stor-
age which can be accessed by the OS, we design two
mechanisms to ensure its security. First, we encrypt the
per-application secret key using a per-device public key.
Therefore, only the runtime system which has access to the
per-device private key is able to decrypt it. Second, to ensure
the integrity of the manifest, we append a digital signature
calculated on the content of the manifest using a per-device
private key. In a real deployment, we note that per-device
public/private key pairs used for encryption and signature
should be separated. In the presentation of this paper, we
do not differentiate them for simplicity.

7 IMPLEMENTATION

We have implemented TrustShadow on a Freescale
i.MX6q ARM development board that integrates an ARM
Cortex-A9 MPCore processor, 1GB DDR3 DRAM and 256KB
iRAM. As is discussed in the section above, TrustShadow
involves operations on both the normal and secure worlds.
In this section, we therefore describe our implementation
details in turn.

7.1 Normal World
In the normal world, we made the following changes to
the Linux kernel with version 3.18.24. (i) We added ker-
nel parameter tz_mem=size@start which indicates the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

memory region used for HAPs, i.e., ZONE_TZ_APP. (ii)
We tweaked zone-based allocator to allocate free pages
from ZONE_TZ_APP when necessary. (iii) We added a tz
flag to task_struct in order to make the OS capable
of distinguishing HAPs. (iv) We implemented a new sys-
tem call tz_execve in order to start an HAP in Linux.
(v) We changed the control flow of ret_to_user and
ret_fast_syscall, so that the Linux OS can pass the
execution back to a corresponding shadow HAP instead of a
zombie HAP. (vi) We hooked the page fault handler so that
it can prepare page table update information for the runtime
system. (vii) We augmented the data structure of page table
so that it could recognize page faults caused by accessing
encrypted pages. This is achieved by adding a new bit in
the software page table entry. (viii) We modified the code
handling signals in order to set up a signal stack in the
marshaling buffer and make it ready for a HAP. In total,
these changes introduce about 320 LOC to the Linux kernel.

7.2 Secure World
In the secure world, we implemented the aforementioned
runtime system with about 4.8K LOC of ANSI C and 0.8K
LOC of assembly. We used the Cryptographic Acceleration
and Assurance Module (CAAM) shipped with our experi-
ment board to perform AES encryption, hash, and HAMC
calculations. For RSA, we ported mbed TLS [47] in our
board. We implemented all the cryptographic operations
within the SoC. Specifically, all the sensitive data, including
the original keys, key schedules, and intermediate results
are redirected into a single reserved iRAM page. Memory
encryption works with AES-256 in CBC mode. The Initial-
ization Vector (IV) is chosen as the virtual address of the
encrypted page.

Sliding Window. The runtime system assigns a dynamic
number of iRAM pages to each HAP. Starting from the first
available iRAM page, the runtime system keeps a circular
index to the next available iRAM page. Page faults occurred
due to private region accesses continue to consume iRAM
pages until the assigned pages are used up. In this case, the
circular index points to the first iRAM page in the window,
and swaps it for the new page fault request. After system
boot, the first HAP monopolizes all the iRAM resource6. As
more HAPs are created, they begin to share the iRAM re-
source. TrustShadow simply adjusts the amount assigned
to each HAP to ensure an even distribution.

Secure Boot. We implemented a secure boot mecha-
nism to guarantee the integrity of TrustShadow. Using
High Assurance Boot (HAB), a non-bypassable proprietary
boot ROM first loads the image of the runtime system.
Then, it examines the integrity of the image. After pass-
ing the integrity check, the runtime system starts, using
TZASC to configure the access policy of memory regions
ZONE_TZ_RT, ZONE_NORMAL, and ZONE_TZ_APP. Since
iRAM is not a part of DRAM, it cannot be configured using
TZASC. Instead, we enabled OCRAM_TZ_EN bit in register
IOMUXC_GPR10, and set access control policy in the low
8 bits of the CSU_CSL26 register in Central Security Unit

6. There are 63 pages because one page is reserved for cryptographic
operations.

(CSU)7 so that ZONE_TZ_IRAM can only be accessed in
the secure world from the processor. To guarantee that the
policy cannot be maliciously altered, the runtime system
locks the configurations. As a result, further modifications
to the configured policies require a system reboot.

After the success of initialization, the runtime system
loads the uboot bootloader into the normal memory region
which further boots the Linux system. The Linux system
runs in the normal world where it retrieves the manifest as
well as the public/private key pair stored on the persistent
storage. Note that, our implementation encrypts the pub-
lic/private key pair in advance using the 256-bit Zeroizable
Master Key (ZMK) stored on Freescale i.MX6q board.
This ensures the key pair is not disclosed to the Linux
in cleartext. We believe this implementation is a common
practice for many device manufacturers [48].

To facilitate the secure boot, the Linux system passes
the manifest and public/private key pair to the runtime
system which further decrypts the key pair and installs the
manifest. With this process completion, the runtime passes
the execution back to the Linux system.

Kernel Page-table Isolation. The destructive Meltdown
attack [39] has the potential to steal data from privilege
execution domain. Therefore, it is possible that a HAP
could be exploited to steal data from the runtime system
running in kernel space. We applied the kernel page-table
isolation technique from KASLR [49] to the implementation
of runtime system. In particular, there are two page table
base registers in ARM (TTBR0 and TTBR1). We configured
TTBR0 to determine the address translation for the user
space, while TTBR1 for the kernel space. Before a HAP
is scheduled to run in user space, the runtime system
configures the TTBR1 register to map a minimal set of
kernel space, including the entries to the exception handler
table. On taking an exception, the handler firstly restores
the original TTBR1 register which maps the whole kernel
space. Along with Meltdown, Spectre [50] is also relevant to
TrustShadow. We defer the discussion of the implications
of both attacks to Section 9.3.

8 EVALUATION

In this section, we evaluate TrustShadow by conducting
extensive experiments. Using microbenchmarks, we first
explore the impact of TrustShadow upon primitive OS
operations. Second, we quantify the overhead of I/O opera-
tions imposed by TrustShadow. Last, we show the results
we measured with a real-world program – the Nginx web
server. We conducted the aforementioned experiments on
a Freescale i.MX6q board running both native Linux
and TrustShadow. The performance of TrustShadow is
measured in two modes, i.e., with and without memory
encryption. When memory encryption is enabled, we as-
signed 48 pages in ZONE_TZ_IRAM as the sliding window.
We treated the performance observed from native Linux
as our baseline and compared it with those observed from
TrustShadow.

7. CSU CSL is a set of registers only accessible in the secure world.
It can set access policies for individual slaves.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Latency (µs) Overhead

Test case Linux TrustShadow
without ME

TrustShadow
with ME

TrustShadow
without ME

TrustShadow
with ME

null syscall 0.7989 1.6048 1.9736 2.01x 2.47x
open/close 29.2168 40.7886 42.3101 1.40x 1.45x
mmap (64m) 559.0000 784.0000 934.0000 1.40x 1.67x
pagefault 4.7989 7.9764 8.5795 1.66x 1.79x
signal handler
install

1.6257 3.8294 4.9310 2.36x 3.03x

signal handler
delivery

51.6111 57.0349 59.0811 1.11x 1.14x

fork+exit 987.0000 2328.6000 5002.3333 2.36x 5.06x
fork+exec 1060.3333 2509.0000 5163.7333 2.37x 4.87x
select (200fd) 15.0707 18.8649 20.1855 1.25x 1.34x
ctxsw 2p/0k 30.3700 32.7100 41.1300 1.08x 1.35x

TABLE 2
LMBENCH MICRO-BENCHMARK RESULTS

8.1 Microbenchmarks
Using LMBench [51], we studied the overhead imposed to
basic OS operations. More specifically, we ran various sys-
tem services against both native Linux and TrustShadow.
To minimize the noise involved during our experiment,
we ran each benchmark with 1,000 iterations and took the
average as our measures.

Table 2 shows the results. Here, ME stands for memory
encryption. First, we observe that TrustShadow in both
modes introduce considerable overheads to individual op-
erations. Most notably are fork+exit, fork+exec and
signal handler install, all of which increase over-
head by more than 2.36x. The high overhead introduced
by the first two services is mainly due to the fact that
TrustShadow optimizes the OS to populate all the marshal-
ing buffer in one go when creating a new thread. And, the
high overhead imposed by signal handler install
results from copying a signal stack from the page in the
normal world to one in the secure world.

Second, compared to TrustShadow without ME, we
observe that TrustShadow with ME has slightly increased
overheads in most of the measured system services except
for fork+exit and fork+exec. For fork related system
services, TrustShadow with ME needs to additionally pre-
pare the clear-text working set in ZONE_TZ_IRAM for the
new thread, which consumes considerable time.

While the overhead shown in the table appears
large, it should be noted that, this does not imply that
TrustShadow jeopardizes the performance of applications
under protection. In fact, applications are significantly less
sensitive to system services. As we will show later in the sec-
tion, TrustShadow imposes only negligible to acceptable
performance overhead on real-world application execution.

8.2 File Operations
To quantify the overhead imposed to I/O throughput, we
conducted an experiment using Sysbench [52] in different
modes. As is discussed earlier, TrustShadow allows devel-
opers to designate whether or not to protect a particular file.
Thus, we conducted this experiment with and without file
protection enabled.

We prepared 128 files, each of which has 8Mb, and tested
both sequential write and random write. We measured the
performance with and without cache. Results with cache en-
abled estimate the actual I/O performance of TrustShadow
in real-world scenarios, while results with cache disabled
reflect the raw I/O performance. We achieved this by tuning

67
6.5

4

61
2.4

4

27
45

.24

71
5.8

6

61
8.6

4

55
5.3

25
20

.23

67
1.7

3

24
9.1

2

22
4.5

2

25
2.1

8

22
2.6

7

S e q u e n t i a l W r i t e R a n d o m W r i t e - - S e q u e n t i a l W r i t e R a n d o m W r i t e
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

C a c h e E n a b l e d

Th
rou

gh
pu

t (K
b/s

ec
)

 L i n u x
 T r u s t S h a d o w w i t h o u t F i l e P r o t e c t i o n
 T r u s t S h a d o w w i t h F i l e P r o t e c t i o n

C a c h e D i s a b l e d
Fig. 5. File I/O performance as measured by sequential and random
write.

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4
1 . 0 0
1 . 0 2
1 . 0 4
1 . 0 6
1 . 0 8
1 . 1 0
1 . 1 2

Ov
erh

ea
d

F i l e S i z e (K B)

 T r u s t S h a d o w w / o M E
 T r u s t S h a d o w w M E

Fig. 6. Throughput overhead imposed by TrustShadow across HTML
responses in different sizes.

parameters of Sysbench to work in write-through mode and
force a call to fsync() after each write operation.

Figure 5 shows the results. When cache is disabled,
sequential write did not exhibit significant advantage over
random write. However, sequential write benefits a lot
when cache is in effect (3.84x increase compared with ran-
dom write). In both cases, the slowdown introduced by
TrustShadow without file protection is moderate (around
1.09x), while the slowdown by TrustShadow with file
protection is substantial. This is due to the fact that
TrustShadow with file protection enabled involves heavy
encryption and hashing computations when it synchronizes
pages to persistent storage. Note that the difference between
TrustShadow with and without file protection solely re-
sults from cryptographic operations. This indicates employ-
ing a more efficient cryptographic engine is a straightfor-
ward way of improving file I/O performance.

8.3 Application Benchmark
To study the impact of TrustShadow upon real-world
applications, we mimic an embedded web server running
on an IoT device. Many IoT devices expose to their users a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Bootup & world switch 1,157
External exception forwarding 2,273
Internal exception forwarding 387
Page table update 567
Iago attack checking (mmap manipulation) 890
Encryption 364
Total 5,638

TABLE 3
SOURCE CODE BREAKDOWN OF THE RUNTIME SYSTEM.

web interface to access the service or make configurations.
For example, in an IP camera, users are able to monitor the
videos on-line, or to control the movement of the cloud deck.

We ran the Nginx web server with version 1.9.15 on our
testbed against both native Linux and TrustShadow. We
configured Nginx to respond with HTML file in different
sizes. To quantify the server throughput, we utilized the
Apache benchmark [53] on another machine to connect
to the server. We configured the benchmark program to
create 10 connections simultaneously sending 10,000 HTTP
requests. This experiment setting allows us to overwhelm
the server and thus compare the throughput variation from
the viewpoint of an end user.

Figure 6 shows the throughput overhead of Nginx.
We observe that TrustShadow downgrades the server
throughput by about 6% ∼ 12% when a client requests a
file in a relatively small sizes. However, the throughput
downgrade is alleviated when the requested file increases.
As is shown in Figure 6, the server throughput drops only
by 2% when a client requests a file with a size more than
256 KB. Overall, both TrustShadow with and without ME
follow the same trend. However, TrustShadow without
ME performs slightly better than that with ME as expected.
Regarding latency, we measured the 95% percentile in each
experiment, and found almost no latency overhead. The
raw HTTP performance measurements can be found in
Appendix B.

To show that this overhead is acceptable for real-world
IoT applications, we configured the Nginx as a streaming
server over HTTP. We successfully streamed a 1080p video
through LAN without noticeable latency or glitch. Typi-
cally, 1080p streaming requires a bandwidth of 4000-8000
kbps [54], while the peak bandwidth in our prototype can
achieve 400,000 kbps. Therefore, we would like to conclude
that TrustShadow exploits the redundant computing pow-
ers of IoT devices to significantly improve system security,
without disturbing the regular operations of such devices.

8.4 Trusted Code Base
To demonstrate the security of TrustShadow quantita-
tively, we analyze the TCB of our system, identify the
share of each component, and compare its size with x86
alternatives.

Ultimately, all the code of a HAP itself must be trusted.
Therefore, like all the other works in this line, user-space
code is included in the TCB. Its size is highly dependent on
the application’s functionality and complexity. We rely on
code review to ensure trust for this part of TCB.

The runtime system maintains the execution environ-
ment for a HAP, and thus must be included in the TCB. As

mentioned earlier, our runtime system has only about 5.6K
LOC, which we believe is small enough for manual review
or formal verification. In Table 3, we show a breakdown of
each component in our prototype. A substantial portion of
implementation is for external exception forwarding. This is
because forwarding system calls has to deal with different
interface definitions of every possible system call. In com-
parison, previous x86 works have their own privileged code
that must be trusted. Hypervisor-based solutions [2], [7],
[20], [21] include the whole hypervisor in its TCB, bloating
their TCBs by several hundreds of thousands of lines of
code. Although thinner hypervisors exist [11], we are not
aware of any similar system built on top of them. Haven [9]
includes LibOS, a large subset of Windows in its TCB,
resulting a TCB of millions LOC. VirtualGhost [12] includes
about 5.3K LOC for their run-time system and LLVM passes.
This is the only solution that has comparable TCB with
TrustShadow.

9 DISCUSSION

In this section, we first summarize how TrustShadow
defeats OS-level and physical attacks to a HAP. Then, we
analyze the security of the runtime system, and discuss the
implications of the destructive Meltdown [39] and Spec-
tre [50] attacks to TrustShadow and other attack surface.
Finally, we compare our solution with Intel SGX, a pro-
cessor extension for x86 platforms which provides similar
functions.

9.1 HAP Security
TrustShadow protects an application from four aspects. (1)
With a mechanism to verify the integrity of a program im-
age, a malicious OS cannot manipulate application code/-
data at load time. (2) With the isolation of code segments,
the cryptographic protection of data segments, and the
introspection mechanism, a malicious OS cannot interfere
with HAP execution at run time. (3) With the cryptographic
protection of private data segments, a local intruder cannot
access a HAP’s secrets through physical attacks. (4) With a
cryptographic mechanism encrypting files and signing meta
data, attackers can no longer read a file under protection or
make any modification to it.

9.2 Runtime System Security
The protection above is established on the basis of the cor-
rectness and robustness of the runtime system. Our design
enhances the security of the runtime system from three
aspects. First, our design ensures the integrity of the runtime
system at load time because the hash of the verification
public key is burned in the chip’s fuses and HAB uses this
key to verify the signature of the runtime system image
before loading it. Second, during execution, the runtime
system is loaded into a secure physical region that is isolated
from the Linux OS. Third, we design the interface to the
runtime system to be as simple as possible. This greatly
raises the bar for the attackers to manipulate the critical data
structure of the runtime system. This is due to three reasons.
(1) An application must undergo critical security reviews
before being authorized to run as a HAP (i.e., providing it

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

with a manifest with manufacture signature). (2) Even if a
HAP has vulnerabilities that may be exploited to execute
arbitrary code, it only runs with user privilege. (3) The
interface exposed by the runtime system is narrow. Most of
the time, the runtime system simply forwards the exceptions
to the Linux OS. For example, crafted system call arguments
that cause out-of-bounds memory access can only influence
the Linux kernel, not the runtime system. The reduced
functionality in the runtime system leads to the small code
base of our prototype implementation, which makes formal
verification of our code possible [43], [44].

9.3 Implications of Meldown and Spectre

Meltdown [39] and Spectre [50] have imposed serious secu-
rity challenges to virtually all the computing systems. We
explain their implications to ARM TrustZone, practically
to TrustShadow. There are three variants disclosed in the
original whitepapers. We analysis them one by one.

Meltdown (rogue data cache load, CVE-2017-5754). Melt-
down takes advantage of out-of-order execution to load
the cache lines corresponding to kernel memory, to which
the attacker otherwise does not have privilege to access.
Since the invalid access to kernel memory causes irreversible
effect to cache lines in the processor, the attacker could infer
the kernel memory by observing timing difference when
accessing his own memory. There are two potential exploits
to TrustShadow. First, as with the original Meltdown attack,
a HAP running in the user space of secure world, could
break privilege isolation and access arbitrary memory of
our runtime system. However, as mentioned in Section 7.2,
we have implemented a similar mechanism as KAISER (or
KPTI in Linux) [49] that unmaps kernel memory when
entering user space. This is easily achieved by updating
TTBR1 which holds offset to page table corresponding to
runtime system. Second, there are potential concerns that
the untrusted Linux kernel could build a page tale entry that
maps to secure physical memory and then launch Meltdown
to infer secure memory. We argue that this is impossible
because TZASC always returns zero for invalid accesses. As
a consequence, the influence on observable cache is always
fixed and so cannot be leveraged.

Spectra V1 (bounds check bypass, CVE-2017-5753). Spec-
tra V1 takes advantage of speculative execution to bypass
bounds checks to access memory that the code could not
normally access. Again, cache side channel is used to infer
the actual unauthorized data. Although the original Spectra
V1 applies to ARM processors in general, it cannot break the
boundary between secure world and normal world. This is
because the invalid memory access is issued in the normal
world, which returns zero. As with the case in Meldown, it
cannot be leveraged in cache side channel attack.

Spectra V2 (branch target injection (CVE-2017-5715). Spec-
tre V2 leverages shared branch prediction buffer (BPB)
to influence the execution path of other tasks, potentially
across exception levels. Unlike Meltdown and Spectre V1,
invalid memory accesses are issued by the ”legitimate”
code in the correct exception level (although the results
are discarded), which can leave observable trace in cache,
causing side channel attacks. In practice however, spectre

V2 is extremely hard to exploit. As a general mitigation
technique, invalidating the BPB whenever switching from
normal world to secure world is sufficient to defeat this
attack.

9.4 Remaining Attack Surface.
To minimizes TCB, the runtime system does not implement
system services itself, but relies on the OS. With full control
of process scheduling, the OS can easily launch DoS attacks
to a HAP. Similarly, to start a HAP, the OS may choose to in-
voke the normal execve system call instead of tz_execve.
However, the process is executed in the normal world, so it
cannot access cryptographically protected files.

We have designed a signing mechanism to verify the
authenticity of a manifest. However, when a vulnerable
program is updated, the corresponding manifest should
be updated as well. A roll-back attack happens when an
attacker executes the vulnerable version of the program with
an older manifest. To prevent this from happening, one of
our future work is to add a version number field in the
manifest, and periodically communicate a list showing the
updated version numbers of trusted programs between the
runtime system and a remote server.

Last but not least, side channel attacks have been de-
veloped to extract information locally [40], [41], [42] or re-
motely [55], [56], [57]. TrustShadow’s current design may
be subject to this line of side channel attacks. However, we
can adopt existing techniques to mitigate such attacks [58].

9.5 Comparison With Intel SGX.
TrustShadow resembles Intel Software Guard Extensions
(SGX) extension available in the newest Intel processors [13].
By creating an enclave, SGX-enabled platform is able to
isolate the code and data of an application from the rest
of system, including the OS kernel and even BIOS. At a low
level, SGX is an architectural extension to x86 processors,
which adds a set of new complex instructions. For example,
dedicated instructions are used to create an opaque data
structure called Enclave Page Cache Map (EPCM), which
defines the intended physical memory mappings of an
enclave. Then the MMU circuit is instrumented to inter-
cept page faults and to verify compliance with EPCM.
Apparently, ARM processors follow a Reduced Instruction
Set Computer (RISC) instruction set architecture, which
is not likely to support these dedicated SGX instructions.
TrustShadow fills the gap of providing similar security
features for ARM-base IoT devices in a lightweight manner.

In the following, we compare TrustShadow with Intel
SGX, in an attempt to figure out what falls short in our
design, and possibly suggest architectural modifications on
ARM to build a more robust defense solution. As the most
fundamental feature, both solutions provide process isola-
tion from the OS kernel. However, SGX goes further; an en-
clave is constrained in the CPU package, therefore, it is even
isolated from BIOS and hypervisors. Both systems provide
measurement, which ensures code and data are loaded in
the memory correctly. They also use a similar approach (to
be exact, cryptographic hash function) to achieve this goal.
Based on measurement, SGX is able to generate a “quote”,
a proof to a remote entity that an enclave was instantiated

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Isolation Measurement Attestation Sealing Memory Encryption Flexibility Unmodified OS Unmodified Program
TrustShadow 3 3 7 3 3 3 7 3

Intel SGX 3 3 3 3 3 7 7 7

TABLE 4
COMPARISON WITH INTEL SGX.

correctly, i.e., remote attestation [59]. This feature is miss-
ing in the current design of TrustShadow. However, our
design can achieve the same security guarantee following a
different approach. In particular, as mentioned earlier, there
is an encryption key associated with each HAP. This key
is contained in the manifest signed by the device manufac-
turer. With proper key distribution mechanism, this key (or
a derived key) can be shared with the application provider,
possibly the manufacturer itself. Then, if the HAP later com-
municates with its remote verifier on an encrypted channel
protected by this key, the remote verifier is convinced that
he is communicating with the authentic program. This is
because only a correctly loaded HAP can execute in the
secure world and have access to the encryption key. Seal is a
security feature which enables the application secrets to be
saved in non-volatile memory for future use. TrustShadow
employs file I/O interception to transparently encrypt and
decrypt data when accessing files, while SGX has dedicated
instructions to support this. Regarding memory encryption,
SGX implements a “tweaked” AES in Counter Mode [60],
while TrustShadow utilizes the cryptographic acceleration
hardware to implement AES-256 in CBC mode. Memory
encryption is performed transparently to the OS kernel in
both solutions. As the memory encryption algorithm can
be programmed in our solution, TrustShadow is more
flexible in terms of algorithm choice. In both solutions, the
OS kernel needs to be patched to be benefited from the de-
signed security features. Finally, TrustShadow is designed
to support unmodified programs, while SGX needs substan-
tial re-engineering efforts to wrap the program to harvest
the security benefits [9]. We summarize the comparison in
Table 4.

10 CONCLUSION

In this paper, we have presented TrustShadow that uti-
lizes a carefully designed runtime system to shield appli-
cations running on multi-programming IoT devices. With
TrustShadow, security-critical applications on these de-
vices can be comprehensively protected even in the face of
OS compromise and physical intrusions, which are major
security concerns of IoT devices. Unlike techniques pre-
viously proposed, the design of TrustShadow does not
require modification to applications. As a result, security can
be guaranteed without the re-engineering efforts from the
developers. Since we leverage TrustZone, a security feature
available for future ARM IoT devices, we expect that our
solution can be broadly applicable. Experiment results with
both micro-benchmark and real IoT application show that
TrustShadow imposes only negligible – and occasionally
acceptable – overhead to IoT devices. With an increasing
number of smart IoT devices developed, and the purse of
hardware aided security solutions, we expect the design

of TrustShadow, which provides major features of SGX,
could inspire more research in the area of IoT computing.

REFERENCES

[1] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“Trustshadow: Secure execution of unmodified applications with
arm trustzone,” in MobiSys ’17, 2017.

[2] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow:
A virtualization-based approach to retrofitting protection in com-
modity operating systems,” in ASPLOS ’08, 2008.

[3] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. Calandrino, A. Feldman, J. Appelbaum, and E. Felten, “Lest We
Remember: Cold Boot Attacks on Encryption Keys,” in USENIX
Security ’08, 2008.

[4] T. Müller, M. Spreitzenbarth, and F. Freiling, “FROST: Forensic
recovery of scrambled telephones,” in 11th International Conference
on Applied Cryptography and Network Security, 2013.

[5] M. Becher, M. Dornseif, and C. Klein, “Firewire: All your memory
are belong to us,” in 6th Annual CanSecWest Conference, 2005.

[6] D. Hulton, “Cardbus bus-mastering: 0wning the laptop,” in An-
nual ShmooCon Convention, 2006.

[7] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“Inktag: Secure applications on an untrusted operating system,”
in ASPLOS’13, 2013.

[8] R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: Making trust
between applications and operating systems configurable,” in
OSDI’06, 2006.

[9] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications
from an untrusted cloud with haven,” in OSDI’14, 2014.

[10] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for tcb minimization,”
SIGOPS Oper. Syst. Rev., 2008.

[11] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation,” in
2010 IEEE Symposium on Security and Privacy, 2010.

[12] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Protect-
ing applications from hostile operating systems,” in ASPLOS’14,
2014.

[13] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions
and software model for isolated execution,” in HASP ’13, 2013.

[14] D. Kaplan, “AMD x86 memory encryption technologies.” Austin,
TX: USENIX Association, 2016.

[15] P. A. Peterson, “Cryptkeeper: Improving security with encrypted
ram,” in Technologies for Homeland Security (HST), 2010 IEEE Inter-
national Conference on, 2010.

[16] J. Götzfried, T. Müller, G. Drescher, S. Nürnberger, and M. Backes,
“Ramcrypt: Kernel-based address space encryption for user-mode
processes,” in ASIACCS ’16, 2016.

[17] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, S. Saroiu,
and A. Wolman, “Protecting data on smartphones and tablets from
memory attacks,” in ASPLOS’15, 2015.

[18] ARM Ltd., “Security technology building a secure system using
trustzone technology (white paper),” 2009.

[19] S. Checkoway and H. Shacham, “Iago attacks: Why the system call
api is a bad untrusted rpc interface,” in ASPLOS’13, 2013.

[20] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, P.-c.
Yew, and W. Mao, “Tamper-resistant execution in an untrusted
operating system using a virtual machine monitor,” Parallel Pro-
cessing Institute, Fudan University, Tech. Rep. FDUPPITR-2007-
0801, 2007.

[21] J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy
for user applications on a per-page basis,” 2008.

[22] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,
“Terra: A virtual machine-based platform for trusted computing,”
in SOSP’03, 2003.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[23] Felix Baum, “Why you don’t necessarily need a hypervisor,”
2014, http://embedded-computing.com/guest-blogs/why-you-
dont-necessarily-need-a-hypervisor/.

[24] ARM Architecture Group, “Virtualization Extensions Archi-
tecture Specification,” 2010, https://www.arm.com/products/
processors/technologies/virtualization-extensions.php.

[25] ——, “ARMv8-M Architecture Simplifies Security for Smart
Embedded Devices,” 2015, https://www.arm.com/about/
newsroom/armv8-m-architecture-simplifies-security-for-smart-
embedded-devices.php.

[26] CVEdetails.com, “Xen: Vulnerability statistics,” http:
//www.cvedetails.com/vendor/6276/XEN.html.

[27] ——, “Vmware: Vulnerability statistics,” http://
www.cvedetails.com/vendor/252/Vmware.html.

[28] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone
to build a trusted language runtime for mobile applications,” in
ASPLOS’14, 2014.

[29] N. Zhang, K. Sun, W. Lou, and T. Hou, “Case: Cache-assisted
secure execution on arm processors,” in The 37th IEEE Symposium
on Security and Privacy (S&P), 2016.

[30] H. Sun, K. Sun, Y. Wang, and J. Jing, “Trustotp: Transforming
smartphones into secure one-time password tokens,” in ACM
CCS’15, 2015.

[31] J. Götzfried, N. Dörr, R. Palutke, and T. Müller, “Hypercrypt:
Hypervisor-based encryption of kernel and user space,” in ARES
’16, 2016.

[32] M. Henson and S. Taylor, “Beyond full disk encryption: protec-
tion on security-enhanced commodity processors,” in International
Conference on Applied Cryptography and Network Security, 2013.

[33] D. Lie, C. A. Thekkath, and M. Horowitz, “Implementing an
untrusted operating system on trusted hardware,” SIGOPS Oper.
Syst. Rev., 2003.

[34] L. Su, S. Courcambeck, P. Guillemin, C. Schwarz, and R. Pacalet,
“Secbus: Operating system controlled hierarchical page-based
memory bus protection,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2009.

[35] W. Enck, K. Butler, T. Richardson, P. McDaniel, and A. Smith,
“Defending against attacks on main memory persistence,” in
ACSAC ’08, 2008.

[36] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet,
and R. Vaslin, “Reconfigurable hardware for high-security/high-
performance embedded systems: the safes perspective,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 2008.

[37] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on
aes, and countermeasures,” Journal of Cryptology, vol. 23, no. 1, pp.
37–71, Jan 2010.

[38] ARM Ltd., “ARM Cortex-A57 MPCore Processor Technical Refer-
ence Manual,” http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0488d/index.html.

[39] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,”
ArXiv e-prints, Jan. 2018.

[40] P. C. Kocher, Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems, 1996.

[41] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO’99, 1999.

[42] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in CHES ’01, 2001.

[43] V. D. Silva, D. Kroening, and G. Weissenbacher, “A survey of
automated techniques for formal software verification,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
2008.

[44] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Ko-
modo: Using verification to disentangle secure-enclave hardware
from software,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17, 2017, pp. 287–305.

[45] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without re-
turns,” in ACM CCS’10, 2010.

[46] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation
and security isolation of library oses for multi-process applica-
tions,” in Proceedings of the Ninth European Conference on Computer
Systems, ser. EuroSys ’14, 2014.

[47] SSL Library mbed TLS, https://tls.mbed.org/.

[48] Samsung Electronics, “The KNOX Workspace Technical
Details,” https://www.samsungknox.com/en/products/knox-
workspace/technical.

[49] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard, “Kaslr is dead: Long live kaslr,” in Engineering Secure
Software and Systems, E. Bodden, M. Payer, and E. Athanasopoulos,
Eds. Cham: Springer International Publishing, 2017, pp. 161–176.

[50] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre at-
tacks: Exploiting speculative execution,” ArXiv e-prints, Jan. 2018.

[51] L. McVoy and C. Staelin, “Lmbench: Portable tools for perfor-
mance analysis,” in ATC ’96, 1996.

[52] A. Kopytov, “SysBench: A System Performance Benchmark,” 2004,
https://github.com/akopytov/sysbench.

[53] Apache Software Foundation, “Apache HTTP server benchmark-
ing tool,” http://httpd.apache.org/docs/2.4/programs/ab.html.

[54] IBM Cloud Video, “Internet connection and recommended
encoding settings,” https://support.ustream.tv/hc/en-
us/articles/207852117-Internet-connection-and-recommended-
encoding-settings.

[55] R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache
Storage Channels: Alias-Driven Attacks and Verified Countermea-
sures,” in IEEE Symposium on Security and Privacy (S&P), 2016.

[56] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“Armageddon: Cache attacks on mobile devices,” in USENIX
Security ’16, 2016.

[57] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems,” in
2015 IEEE Symposium on Security and Privacy, 2015.

[58] Y. Zhou and D. Feng, “Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security
testing.” IACR Cryptology ePrint Archive, 2005.

[59] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative tech-
nology for cpu based attestation and sealing,” in Proceedings of the
2nd international workshop on hardware and architectural support for
security and privacy, 2013.

[60] S. Gueron, “A memory encryption engine suitable for general
purpose processors.” IACR Cryptology ePrint Archive, 2016.

Le Guan is a postdoctoral fellow under supervisor Peng Liu at Penn
State University. His research interests rest mainly in the area of system
security, particularly in hardware aided security and mobile security.

Chen Cao is currently a post-doc at the Cyber Security Lab in the
College of Information Sciences and Technology at the Pennsylvania
State University. His research interests include operating system design
and implementation, operating system security.

Peng Liu is a Professor of Information Sciences and Technology, found-
ing Director of the Center for Cyber-Security, Information Privacy, and
Trust, and founding Director of the Cyber Security Lab at Penn State
University. His research interests are in all areas of computer and
network security.

Xinyu Xing is an Assistant Professor in the College of Information
Sciences and Technology at The Pennsylvania State University. He
earned his Ph.D. in Computer Science from Georgia Tech. His research
area covers system security, binary analysis and deep learning.

Xinyang Ge is a Senior Research Software Developer Engineer at
Microsoft Research Redmond. His research interests lie in the areas
of system and security.

Shengzhi Zhang is an Assistant Professor in the School of Computing,
Florida Institute of Technology. His research interest includes, but not
limited to system security, mobile security and vehicle security.

Meng Yu joined the Department of Computer Science, The University
of Texas at San Antonio in July, 2015. His research interests include
computer and network security.

Trent Jaeger is a Professor in the Computer Science and Engineering
Department at The Pennsylvania State University and the Co-Director of
the Systems and Internet Infrastructure Security (SIIS) Lab. Trent’s re-
search interests include operating systems security and the application
of programming language techniques to security.

